REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

الجمهورية الجزائرية الديموقراطية الشعبية

MINISTERE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

وزارة التعليم العالى والبحث العلمى

ECOLE NATIONALE SUPERIEURE AGRONOMIQUE EL-HARRACH- ALGER

المدرسة الوطنية العليا للعلوم الفلاحية

الحراش-الجزائر

Mémoire

En vue de l'obtention du diplôme d'ingénieur

Département : Technologie alimentaire et nutrition humaine

Spécialité : Alimentation et nutrition humaine

THEME

Caractérisation d'une protéase produite par *Bacillus velezensis* en culture semi-solide. Aptitudes fromagères.

Présenté par : HADDAD Siham et TOUAHRIA Lylia Soutenu le : 27/10/2016

Jury:

Président : M. MEKIMENE L.

Promoteur: M. BELLAL M. M.

Co-promoteur: M. NOUANI A.

Examinateurs: M. SADOUKI M.

Mme, MERIBALA.

Promotion: 2011 – 2016

SOMMAIRE

INTRODUCTION	1
Chapitre 1: Synthèse bibliographique	
1. La présure et ses succédanés	3
1.1. La présure	3
1.1.1. Définition de la présure	3
1.1.2.Préparation physicochimique de la présure	3
1.1.3. Propriétés physicochimiques de la présure	5
1.2. Les succédanés de présure	6
1.2.1. Enzymes coagulantes d'origine animales	6
1.2.2. Enzymes coagulantes d'origine végétales	7
1.2.3. Les enzymes coagulantes d'origine microbienne	8
2. Lait	11
2.1 Définition et caractéristiques du lait	11
2.2. Composition du lait	11
2.2.1. La fraction protéique	11
2.2.2 La matière grasse	14
2.2.3 Les Glucides	14
3. Le fromage	15
3.1. Définition	15
3.2. Etapes de fabrication du fromage	15
3.2.1 La préparation du lait	16
3.2.2 Coagulation du lait (FAO, 1993)	17
3.2.3. Égouttage du coagulum	20
3.2.4 Affinage	22
3.3 Classification des fromages	23
Chapitre 2: Matériel et méthodes	
1. Matériel biologique	25
1.1. Isolement et identification de la souche Bacillus velezensis	25
1.2. Préparation de l'inoculum	25
1.3. Préparation et inoculation du milieu de culture	25
1.3.1. Méthode de préparation et d'inoculation du milieu de culture	25
1.3.2. Conditions de fermentation : étude préalable	26
2. Caractérisation de l'extrait enzymatique brut (EEB)	26

2.1 Extraction de l'enzyme coagulante	26
2.2. Mesure des activités enzymatiques	26
2.2.1. Mesure de l'activité coagulante (AC)	26
2.2.2. Mesure de l'activité protéolytique (AP)	28
2.2.3. Détermination de l'indice AC/AP	28
2.3. Dosage des protéines totales de l'extrait enzymatique	28
2.4. Détermination des conditions optimales de l'activité coagulante	28
2.4.1. Influence de la température	29
2.4.2. Influence du pH	29
2.4.3. Influence de la concentration en CaCl ₂	29
2.4.4. Influence de la concentration en extrait enzymatique	29
2.4.5. Etude de la stabilité de l'extrait enzymatique brut	29
2.5. Analyse statistique	29
2.6. Effet de quelques effecteurs sur l'activité coagulante	30
2.7. Purification de l'extrait enzymatique brut	30
2.7.1. Précipitation au sulfate d'ammonium	30
2.7.2. Dessalage de l'extrait enzymatique par dialyse	30
2.7.3. Chromatographie d'exclusion moléculaire (Gel filtration)	31
2.8. Estimation du poids moléculaire	32
3. Essai de fabrication du fromage à pâte pressé cuite par l'utilisation de l'EEB	33
3.1. Etapes de fabrication du fromage	33
3.1.1. Préparation du lait	35
3.1.2. Emprésurage	35
3.1.3. Découpages, brassage et lavage du caillé	35
3.1.4 La cuisson du caillé	35
3.1.5. Prépressage, moulage, pressage	35
3.1.6. Saumurage	35
3.2. Analyses physicochimiques du lait et du fromage	36
3.2.1. Analyses physico-chimiques du lait	36
3.2.2. Analyses physico-chimiques du fromage	37
3.3. Analyse sensorielle du fromage	38
Chapitre 3: Résultats et discussion	
1. Conditions de fermentation	39
Caractérisation de l'extrait enzymatique brut 2.1. Activité coagulante de l'EEB	

2.2. Activité protéolytique, indice AC/AP et teneur en protéine de l'EEB	40
2.3. Les conditions optimales de l'activité coagulante	41
2.3.1. Influence de la température sur l'activité coagulante de l'EEB	41
2.3.2. Influence du pH sur l'activité coagulante de l'EEB	42
2.3.3. Influence de la concentration en CaCl ₂	43
2.3.4. Influence de la concentration en extrait enzymatique brut	43
2.3.5. Etude de la stabilité de l'EEB	44
2.4. Effet de quelques effecteurs sur l'activité coagulante	46
2.5. Analyse statistique	46
2.1. Evaluation des paramètres du modèle	46
2.2. Obtention du modèle mathématique parfait	49
2.3. Activité coagulante maximale	49
3. Purification de l'extrait enzymatique brut	49
3.1. Précipitation au sulfate d'ammonium	49
3.2.Purification des extraits par gel filtration	50
3.2.1. Paramétres de purification	51
3.2.2 Estimation du poids moléculaire	52
4. Essai de fabrication d'un fromage à pâte pressée cuite	53
4.1. Composition physico-chimique du lait utilisé	53
4.2. Analyses physico-chimiques du fromage élaboré type pâte pressée cuite	54
4.2.1. Rendement fromager	54
4.3. Analyse sensorielle du fromage	55
CONCLUSION	59

Résumé

L'objectif de notre travail a consisté, dans un premier temps, à extraire une enzyme coagulante à partir de la souche *Bacillus velezensis*, isolée localement.

La culture de la souche *Bacillus velezensis* a été effectuée sur un milieu semi solide à base de son du blé. La meilleure production enzymatique a été obtenue à 10% de son du blé avec un temps d'incubation de 36h à 30°C sous agitation moyenne de 110 tours/mn. Après l'extraction, les conditions optimale d'activité de la coagulase ont été déterminées : Température: 75°C, pH 5.7, concentration en CaCl₂ : 0.04M, concentration en extrait enzymatique : 76.6 mg/ml).

L'enzyme coagulante appartient au groupe des metalloprotéases, qui présente une stabilité à 35°C pendant 30 min, et conserve son activité au cours d'un stockage de 20 jours à -18°C et à 4°C. Un essai de purification par chromatographie d'exclusion moléculaire sur gel G-75 a permis de mettre en évidence la protéine et d'en estimer son poids moléculaire (46 KDa).

L'activité protéolytique de l'extrait brut est élevée (0.362 DO₆₆₀) avec un rapport AC/AP trop faible par rapport à celui de la présure commerciale.

Les résultats obtenus de cette étude montrent la relation entre l'effet de l'enzyme coagulante sur la qualité du fromage élaboré (pâte pressé cuite). En effet, la différence a été observée au niveau du goût. Cependant, les rendements sont comparables. En outre, les analyses physicochimiques montrent d'une façon générale que les fromages élaborés présentent des caractéristiques intéressantes et une qualité satisfaisante.

Mot clés : *Bacillus velezensis*, activité coagulante, activité protéolytique, fromage a pate pressé cuite.

Abstract

The objective of our work, is the characterization of the milk clotting enzyme from *Bacillus velezensis* which is a microbial stock, isolated locally and identified. The culture of the *Bacillus velezensis* on a solid medium containing wheat bran permitted the secretion of the coagulase. The best enzyme production was obtained at 10% of wheat bran and incubation at 30°C for 36h with stirring 110 rpm.

After extraction, the optimal conditions activity of the coagulant enzyme were determined (pH: 5.7, T: 75°C, coagulant concentration: 76.6 mg/ml and for a 0.04 M CaCl₂).

The enzyme extract belongs to the metalloproteases groups which present stability at 35 $^{\circ}$ C for 30 min, and conserve its activity during 20 days storage at -18 $^{\circ}$ C and 4 $^{\circ}$ C. A test purification by molecular exclusion chromatography on frost G-75 allowed to put in evidence the protease and to estimate its molecular weight (46 KDa). The proteolytic activity of the crude extract is too high (0.362 DO $_{660}$) with a low ration AC / AP compared to the commercial rennet.

The results of this study show the relation between the effects of coagulating enzyme on the quality of cooked pressed paste cheese.

Cheese processing of cooked pressed paste cheese using clotting enzyme from *Bacillus velezensis* had shown no difference in the cheese yield compared to the rennet cheese.

Key words: *Bacillus velezensis*, coagulant activity, proteolytic activity, cooked pressed paste cheese.