Etude de l’Avifaune de la Mitidja

Présentée par
Djamel BENDJOUDI
Directeur de Thèse : M. DOUMANDJI Salaheddine Co-directeur de Thèse : M. VOISIN Jean-François
Soutenu publiquement le 22 / 06 / 2008

Table des matières

Remerciements . . 1
Liste des abréviations . 3
Résumé . 5
Summary . . 7
Introduction . . 9

Chapitre I - Présentation de la Plaine de la Mitidja : la région d’étude . 15

1.1. - Localisation géographique de la Mitidja . 15
1.2. – Milieu physique de la région d’étude . 16
 1.2.1. – Géologie . 16
 1.2.2. – Pédologie . . 17
 1.2.3. – Hydrologie . . 19
1.3. – Facteurs climatiques . 19
 1.3.1. – Température . 19
 1.3.2. – Pluviométrie . . 22
1.4. – Synthèse climatique . 24
 1.4.1. – Diagramme ombrothermique . . 25
 1.4.2. – Climagramme pluviothermique d’Emberger . 27
1.5. – Données bibliographiques sur les facteurs biotiques de la Mitidja . . 27
 1.5.1. – Végétation de la Mitidja . 30
 1.5.2. – Faune aviaire de la Mitidja . . 31

Chapitre II – Matériel et méthodes . 33

2.1. – Choix des stations d’étude . 33
2.2. – Méthodes d’étude du peuplement avien de la région d’étude . 39
 2.2.1. - Méthode d’analyse du peuplement avien selon les origines biogéographiques . 41
2.2.2. – Méthode des échantillonnages fréquentiels et progressifs (E.F.P.) . 42
2.2.3. – Méthode des plans quadrillés ou du quadrat . 43

2.3. – Méthodes d’étude des espèces introduites ou en pleine expansion . 44

2.3.1. – Cas du Perruche à collier Psittacula krameri . 45
2.3.2. – Cas de la Tourterelle Turque Streptopelia decaocto dans la région d’étude . 47
2.3.3 – Cas du Pigeon ramier Columba palumbus . 48
2.3.4. – Cas du Héron garde bœufs Bubulcus ibis . 49

2.4. – Méthode d’étude de l’écologie trophique de quelques espèces d’oiseaux utiles . 50

2.4.1. – Cas de la Pie grièche méridionale Lanius meridionalis . 50
2.4.2. – Cas de l’Elanion blac Elanus caeruleus . 51

2.5. – Paramètres utilisés dans l’exploitation des données . 52

2.5.1. – Utilisation des indices écologiques de composition pour l’exploitation des données . 52
2.5.2. – Utilisation des indices écologiques de structure . 54
2.5.3 – Indice de fragmentation . 55
2.5.4 – Biomasse relative . 55
2.5.5. – Utilisation des méthodes statistiques pour l’analyse des données . 56

Chapitre III – Résultats sur l’avifaune de la Mitidja . 59

3.1. - Etude du peuplement avien de la Mitidja . 59

3.1.1. – Analyse biogéographique du peuplement avien . 60
3.1.2. – Statuts phénologiques et origines biogéographiques des espèces avienennes de la Mitidja . 60
3.1.3. – Exploitation écologique des résultats obtenus sur le peuplement avien . 66
3.1.4. – Fréquences centésimales des principales espèces d’oiseaux observées en Mitidja . 72
3.1.5. – Etude comparative de trois stations représentatives de la Mitidja . 89
3.1.6. – Diagnostic du peuplement avien par l’analyse factorielle des correspondances . 92

3.2. – Les espèces introduites ou en pleine expansion . 100
Chapitre IV – Discussions

4.1. – Peuplement avien de la Mitidja

4.1.1. – Biogéographie et statuts phénologiques des espèces avies de la Mitidja

4.1.2. – Discussions générales sur les résultats du peuplement avien exploités grâce à des indices écologiques et des techniques statistiques

4.2. – Discussions sur les espèces d’oiseaux introduites ou en pleine expansion

4.2.1. – Cas de la Perruche à collier Psittacula krameri

4.2.2. – Discussions sur le cas de la Tourterelle turque Streptopelia decaocto

4.2.3. – Expansion de Streptopelia decaocto en fonction des années

4.2.3. – Répartition de la Tourterelle turque dans la région d’étude

4.2.3. – Discussions sur le cas du Pigeon ramier Columba palumbus

4.2.4. – Discussions sur le cas de Bubulcus ibis

4.3. – Discussions globales sur l’écologie trophique de deux espèces d’oiseaux prédateurs

4.3.1. – Discussions sur le cas de Lanius meridionalis

4.3.2. – Discussions sur le cas d’Elanus caeruleus

Conclusion générale

Référence bibliographique

Autres références

 Annexes

Annexe n° 1 : Flore de la Mitidja

Annexe n° 2 : Faune avienne de la Mitidja
Annexe 3 : Liste des espèces avies rentrant dans le calcul de l’analyse factorielle des correspondances (analyse qualitative) .

Annexe 4 : Liste des espèces avies rentrant dans le calcul de l’analyse factorielle des correspondances (analyse quantitative) .
Remerciements

Ce travail n’aurait pas pu voir le jour sans la participation et le soutien de nombreuses personnes que je souhaite remercier ici :

Mes remerciements s’adressent tout d’abord à mes deux directeurs de thèse M.M. Salaheddine DOUMANDJI Professeur à l’institut national agronomique d’El Harrach et M. Jean-François VOISIN, Maître de Conférences au Muséum national d’Histoire naturelle de Paris qui n’ont cessé de me prodiger des conseils fort utiles durant la durée de l’étude. Je suis d’autant plus reconnaissant pour la confiance qu’ils m’ont témoigné, leurs disponibilités et leurs enthousiasmes. J’exprime une autre fois ma reconnaissance à M. DOUMANDJI S. pour son sens aigu de la démarche scientifique et sa clairvoyance, ses judicieux conseils et les connaissances dont il m’a fait bénéficié ; M. VOISIN J.F., qui a consenti à superviser ce travail et qui m’a accueilli chaleureusement dans son laboratoire et dans son équipe.

Mme Bahia DOUMANDJI-MITICHE Professeur à l’institut national agronomique d’El Harrach qui a bien voulu nous honorer pour présider le jury.

M.M. Boudjemaa SEMRAOUI Professeur à l’université de Guelma, Mohammed BOUKHEMZA, Professeur à l’université de Tizi ouzou et Belkacem BAZIZ, Maître de Conférences à l’institut national agronomique d’El Harrach, malgré les nombreux engagements ont bien voulu lire et critiquer ce modeste travail.

Je remercie également les membres de l’équipe de Monsieur VOISIN J.F., en particulier Dr. ROMAIN JULLIARD, Maître de Conférence du C.R.B.P.O. (Centre de Recherches sur la Biologie des populations d’oiseaux) au Muséum d’Histoire Naturelle de Paris) pour son aide, sa gentillesse et ses conseils.

Je remercie également Professeur ISSAADI Rachid Doyen de la Faculté d’Agro-vétérinaire et Biologique de l’université SAAD DAHLAB, pour sa gentillesse et ses encouragements.

Mes remerciements s’adresser à M. Jean-Marc BREMOND et Mme Évelyne BRÉMOND-HOSLET de la Bibliothèque du Muséum de Paris, (Laboratoire Mammifères et oiseaux) pour leurs aides et de m’avoir facilité la tâche en matière de recherche bibliographique.

A la mémoire de notre cher botaniste M. Abdelkader BELOUED pour les nombreuses informations fructueuses de la végétation de la Mitidja. La détermination des arthropodes a été largement facilitée par le concours du Pr. DOUMANDJI S., ainsi que les micromammifères par le Dr. BAZIZ B.

Je tiens aussi à remercier le directeur du centre cynégétique marais de Régghaïa et de M.
ARROUGANI Ahmed garde forestier au Marais pour les renseignements, le directeur de l’I.T.A.F. pour la documentation, M. GHAID Ahmed, l’agent de sécurité de Cherarba et les agents de sécurités de Sidi Moussa et de Haouch el Makhfi pour leur aide sur le terrain, l’ensemble des habitants ruraux propriétaires de fermes et exploitations de Chebli, Sidi Moussa, Ramadhnia, Baraki, Meftah, Bourkika, Birtouta, Boufarik, Bouinane, Rouiba et autres pour m’avoir facilité l’accès pour la collecte de données au sein de leurs domaines, ainsi que le personnel du jardin d’essai du Hamma, en particulier M. BOUDERRA D., HAFFACI F., BENGHALAB M., DJENNAS A. et NACHI N.

Je remercie aussi Mmes SAADA N. et BENZARA F. pour leurs aide dans les bibliothèques.

Un grand merci pour toutes les personnes qui de près ou de loin ont contribué à la réalisation de ce travail.
Liste des abréviations

I.T.A.F. - Relevés météorologiques de l’institut Technique d’Arboriculture Fruitière de Boufark
I.T.G.C. - Institut technique des grandes cultures de Oued Smar
I.N.A. – Institut national agronomique d’El Harrach
M.N.H.N. – Muséum national d’Histoire naturelle de Paris
O.N.M. – Office nationale de météorologie de Dar El Béida
P.A.O. - Programme d’Aménagement Côtier de la Zone côtière algéroise
Le peuplement avien de la Mitidja est composé de 125 espèces dont 48 % sont sédentaires et dont la majorité appartient au type faunique Paléarctique (25,6 %). Les valeurs moyennes des contacts par espèce et par station sont comprises entre 0,03 (Bourkika) et 17,1 (Rouiba). Les richesses totales sont élevées dans les stations occidentales. Le peuplement avien de la Mitidja est hétérogène, dont les effectifs ont tendance à être en équilibre entre eux. L’analyse factorielle des correspondances (AFC) qualitative montre que Turdus merula et Passer domesticus x P. hispaniolensis sont omniprésentes. Cependant, l’AFC quantitative rassemble les espèces en 7 nuages de points. Dans chaque nuage, les espèces qui se rapprochent d’une station sont fortes en effectifs. La Perruche à collier s’est manifestée depuis 1996 jusqu’à nos jours dont la population est estimée à 422 individus en 2006. En mars les effectifs notés sont plus importants, surtout le matin entre 6 h et 9 h. Ce fait est montré par la relation entre le nombre d’individus observés par jour et par heure et la valeur maximale des contacts avec la Perruche à collier (P ≠ 0,0093). Cette espèce se nourrit de 44 espèces végétales dont les fruits (S =19) sont consommés en mars, en mai et en décembre (100 %). La richesse alimentaire de Psittacula krameri est la plus grande en été (16 espèces). La Tourterelle turque est recensée en 2001 avec 2,3 couples/ 10 ha. Sa densité s’élève vite, atteignant 31,2 c./10 ha en 2006. Elle colonise davantage le Nord et l’Est par rapport au reste de la plaine de la Mitidja, comme Oued Smar (F = 11,6 %). Le premier couple du Pigeon ramier est signalé en 1992. Elle atteint une densité de 57,3 c. en 2006. Les déplacements trophiques des effectifs de C. palumbus sont importants en mars (322 individus) enregistrés surtout entre 7 et 8 h (62,4 %). Les effectifs moyens les plus forts de Bubulcus ibis sont notés en mars (271 # 95,46 ind.). Les heures de regroupement du Héron garde-boeufs sont importants entre 8 et 10 h au printemps (A.R. = 75,8 %), entre 14 et 16 h en automne (76,5 %), entre 16 h et 18 h en hiver (61,0 %) et en été (71,4 %). 198 espèces-proies sont consommées par Lanius meridionalis, avec une dominance de Coleoptera (45,96 %). Mais, parmi les espèces Gryllus sp. est le mieux représentée (10,0 %). Par ailleurs, Discoglossus pictus (0,6 %) et Mus spretus (0,5 %) sont mentionnés. Les tailles des proies de 17 mm sont fréquents dans le menu de la Pie-grièche méridionale, ainsi celles entre 55 et 70 mm. Il existe une différence significative entre les espèces-proies dévorées par le prédateur. A Baraki la taille de ponte des nids du Laniidae est de 4,3 ± 1,34 œufs avec des taux des éclosions compris entre 92,9 % (2006) et 52,6 % (2007). L’Elanion blac consomme fortement Mus spretus (B % = 64,5 %) dont les effectifs de ses proies ont tendance à être en équilibre entre eux. Elanus caeruleus localise sa proie en vol stationnaire et les tentatives de chasse sont observées surtout au crépuscule.

Mots clés : Peuplement avien, Mitidja, diversité, comportement trophique, type faunique, Pie-grièche méridionale, Perruche à collier, Tourterelle turque, Elanion blac.
النَّظَرَةُ إلىَ نَظَرَةٍ أُخرىٍ الَّتيُّ تَقَدَّرُ الْأَنْتَيَةَ وَالْأَنْتَيَةَ الَّتيُّ تَقَدَّرُ الْأَنْتَيَةَ وَالْأَنْتَيَةَ الَّتيُّ تَقَدَّرُ الْأَنْتَيَةَ وَالْأَنْتَيَةَ
Summary

The avian settlement of Mitidja is composed of 125 species of which 48 % are sedentary and whose majority belongs to the Palearctic faunal type (25.6 %). The average values of the contacts by species and by station are included between 0.03 (Boukika) and 17.1 (Rouiba). The total richnesses are high in the Western stations. The avian settlement of Mitidja is heterogeneous, whose manpower tend to be in balance between them. The qualitative Factorial analysis of correspondences (AFC) watches that Turdus merula and Passer domesticus X P. hispaniolensis are omnipresent. However, the quantitative AFC gathers the species in 7 groups of dots. In each cloud, the species which approach a station are strong in manpower. The Ring-necked Parakeet appeared since 1996 until our days of which population estimated at 422 individuals in 2006. In March noted manpower are more important, especially the morning between 6 h and 9 h. This fact is shown by the relation between the number of individuals observed per day and and the maximum value of the contacts with the Ring-necked Parakeet (P #0.0093). This species is nourished by 44 vegetable species whose fruits (S = 19) are consumed in March, in May and in December (100 %). the richness food of Psittacula krameri is largest in summer (16 species). The Collared Dove is listed in 2001 with 2.3 couples 10 ha. Its density rises quickly, reaching 31.2 c./10 ha in 2006. It colonizes North more and is compared to the remainder of the plain of Mitidja, as Oued Smar (F = 11.6 %). The first couple of the Wood pigeon is announced in 1992. It reaches a density of 57.3 c. in 2006. The trophic displacements of manpower of C. palumbus are important in March (322 individuals) recorded especially between 7 and 8 h (62.4 %), the average manpower strongest of Bubulcus ibis are noted in March (271 # 95.46 ind.). The hours of regrouping of Cattle Egret are important between 8 and 10 H in spring (A.R. = 75.8 %), enters 14 and 16 h in autumn (76.5 %), between 4 p.m. and 18 H in winter (61.0 %) and summer (71.4 %). 198 species-preys are consumed by Lanius meridionalis, with a predominance of Coleoptera (45,96 %). But, among the species Gryllus sp. is best represented (10,0 %). In addition, Discoglossus pictus (0.6 %) and Mus spretus (0.5 %) are mentioned. The sizes of the preys of 17 mm are frequent in the menu of Southern Grey Shrike, thus those between 55 and 70 mm. There is a significant difference between the species-preys devoured by the predator. In Baraki the size of lying of the nests of Laniidae is of 4.3 ± 1.34 eggs with rates of the blossomings ranging between 92.9 % (2006) and 52.6 % (2007). The white Swallow hawk strongly consumes Mus spretus (B % = 64.5 %) whose manpower of its preys tend to be in balance between them. Elanus caeruleus locates its prey with the hovering and the attempts at hunting are observed especially in the twilight.

Key words: Avian settlement, Mitidja, diversity, trophic behavior, faunal type, Southern Grey Shrike, Ring-necked Parakeet, Collared Dove.
Introduction

Dès 1980, des investigations dans le domaine de l’ornithologie ont commencé à être faites. D’abord d’ordre général, elles se sont peu à peu spécialisées dans le temps et dans l’espace. L’ensemble des travaux traitent de la biologie de la reproduction, de l’écologie trophique et de la dynamique des populations d’espèces avies bien déterminées. Il est très utile de mentionner les principales études publiées jusqu’à l’heure actuelle qui portent sur divers aspects écologiques d’une espèce d’oiseau ou d’un groupe d’espèces appartenant à une même famille.

De ce fait, parmi les Ardeidae, le Héron garde-boeufs Bubulcus ibis (Linné, 1758) a été déjà noté par LETOURNEUX en 1871 en Grande Kabylie. Ce n’est que plus d’un
celles présentées lors des journées d’études et dont quelques travaux préliminaires sont cités par DOUMANDJI et DOUMANDJI-MITICHE (1994). C’est dans ce contexte que s’inscrit la présente contribution à la connaissance d’un ensemble de paramètres écologiques qui caractérisent la faune avienne vivant dans la plaine de la Mitidja.

Le présent manuscrit est structuré en quatre chapitres dont le premier décrit le milieu d’étude et les principales stations où l’essentiel du travail est fait. La méthodologie adoptée pour l’échantillonnage du peuplement avien, pour le suivi de l’évolution des espèces introduites ou extensives, pour l’étude des comportements trophiques de l’Elanion blac et de la Pie-grièche méridionale et pour la biologie de la reproduction de la dernière espèce citée, est développée dans le deuxième chapitre. Les résultats obtenus sont rassemblés au sein du troisième chapitre et sont interprétés. Le quatrième chapitre traite des discussions autour des résultats. Enfin une conclusion générale accompagnée de perspectives clôture la présente étude.
Chapitre I - Présentation de la Plaine de la Mitidja : la région d’étude

Le présent chapitre comporte la présentation de la Plaine de la Mitidja, sa localisation géographique, son milieu physique, les facteurs climatiques qui régissent les activités biologiques et les données bibliographiques sur la végétation et la faune.

1.1. - Localisation géographique de la Mitidja

La Mitidja est une dépression longue de large resserrée entre l'Atlas Tellien au sud et les rides sahéliennes d'altitude peu élevée atteignant 60 m en moyenne. Cette vaste plaine sublittorale est bordée à l'est par Bou Zegza, un massif calcaire qui culmine à 1050 m par une série de collines situées entre Boudouaou et Boumerdes, d'altitudes peu élevées comprises entre 50 et 100 m. Cet ensemble de montagnes et de collines encadre la plaine et lui laisse peu d'accès vers la mer, à l'exception d'un couloir assez large formé par l’oued Régghaïa. Au sud et au sud-ouest, ce sont les masses de l'Atlas bidéen qui atteignent 1600 m d'altitude avec un pic à 1620 m au Mont Mouzaïa, borné par les monts de Zaccar de 800 m de haut. Dans la partie occidentale de l'Atlas bidéen, les collines du Sahel entrent en contact avec le massif montagneux du Chenoua qui s'élève à 905 m et rejoignent plus au sud, au niveau du plateau de Fadjana, les premières hauteurs du
Djebel Thiberrarine sis à 853 m (MUTIN, 1977) (Fig. 1). En effet, la Mitidja s’étale sur près de 150.000 ha (36° 29’ à 36° 44’ N.; 2° 25’ à 3° 17’ E.). Dans le quadrilatère formé par Larbâa, Birtouta, Oued El Alleu et Soumâa, de vastes vergers d’agrumes s’étendent. Cependant autour de Boufarik, de Blida et de Rouiba, des plantations de néfliers et d’autres Rosaceae tels que les pommiers, les poiriers, les pêchers, les abricotiers, les pruniers et les amandiers alternent avec des parcelles de céréales et de cultures maraîchères (DOUMANDJI, 1981).

1.2. – Milieu physique de la région d’étude

Dans le présent paragraphe, les principales caractéristiques physiques de la plaine de la Mitidja concernent la géologie, la pédologie et l’hydrologie.

1.2.1. – Géologie

La zone d’étude est une vaste plaine sublittorale formée au début du quaternaire (GLANGEAUD, 1932). ECREMERT et SEGHIRI (1971) notent que la plaine de Mitidja offre sur le plan géomorphologique une assez grande homogénéité. En outre NIANE (1979), montre que la géologie de la région est complexe. Elle est caractérisée par une dominance d’alluvions quaternaires. En effet les oueds qui traversent la plaine, comme Oued El Harrach, Oued Smar et

![Fig. 1 – Localisation géographique de la région d’étude](image)

Echelle : 1/500 000

Oued Hamiz ont ramené des argiles et des limons au cours de leurs crues de la

1.2.2. – Pédologie

1.2.3. – Hydrologie

La longue dépression constituée par la plaine de la Mitidja ne correspond pas à l'existence d'un réseau hydrographique, bien adapté et bien hiérarchisé. Les organismes fluviaux la traversent perpendiculairement selon des directions méridiennes. Ces oueds prennent tous naissance dans l'Atlas. Leurs vallées sont étroites, peu profondes et encaissées (MUTIN, 1977). Parmi ces cours d'eau, il est à citer d'Ouest en Est, les oueds Nador, Mazafran, El Harrach et (AYME, 1956). Ces cours d'eaux naissent dans l'Atlas Tellien, traversent la plaine de la Mitidja vers le nord et franchissent le Sahel par des cluses. Plus précisément l'Oued Nador est formé par la réunion des oueds Bou yerzen, Meurad et Bourrika. Cependant l'Oued Mazafran apparaît le plus important au sein de la Mitidja, constitué des oueds Djer, Bouroumi et Chiffa. Dans la partie orientale de la plaine l'Oued El Harrach traverse la plaine de la Mitidja du Sud vers le Nord pour s'infiler au pied du Sahel jusqu'à la cluse d'El Harrach. À l'extrême Est de la Mitidja l'Oued El Hamiz prend une direction nord-est à partir de Fourkouk jusqu'à Hamadi et se redresse jusqu'au Sahel pour se jeter dans la mer, au Sud de Cap Matifou (AYME, 1956). Le débit de ces oueds n'est pas connu d'une manière précise. La plus grande partie de ces oueds qui traversent la plaine du Sud au Nord de façon perpendiculaire, est actuellement inutilisée. Les écoulèments se font pendant la saison pluviale, quand l'irrigation n'est pas nécessaire. Cette remarque est encore soulignée en 1989 par BOULFÉKHAR qui écrit que la majeure partie des eaux s'écoulent vers la mer, sans avoir été exploitée.

1.3. – Facteurs climatiques

1.3.1. – Température

Chaque espèce ne peut vivre que dans un certain intervalle de températures limité au-dessus par de températures letales maximales et au-dessous par des températures letales minimales. En dehors de cet intervalle, elle est tuée par la chaleur ou par le froid (DREUX, 1974). Ce facteur exerce une grande influence sur les oiseaux migrateurs ce qui les obligent de quitter les lieux d’hivernation en Afrique, en Asie et en Amérique du sud (CUISIN, 1971). En effet, les températures mitidjiennes sont soumises à l'influence de la mer, d'avantage dans la partie orientale de la plaine qu'à Oued El Alieg ou à Hadjout (MUTIN, 1977). Le climat de la région d'étude est de type méditerranéen caractérisé par un été chaud et sec et par un hiver froid et humide. Les valeurs des températures
moyennes mensuelles maximales M et minimales m de la partie Est de la plaine sont placées dans le tableau n° 1.

<table>
<thead>
<tr>
<th></th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Juillet</th>
<th>Août</th>
<th>Septembre</th>
<th>Octobre</th>
<th>Novembre</th>
<th>Décembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>M°C.</td>
<td>17,3</td>
<td>18,0</td>
<td>21,3</td>
<td>22,1</td>
<td>21,5</td>
<td>29,7</td>
<td>30,1</td>
<td>29,3</td>
<td>25,9</td>
<td>23,8</td>
<td>19,4</td>
</tr>
<tr>
<td>2002</td>
<td>4,5</td>
<td>5,8</td>
<td>6,5</td>
<td>8,4</td>
<td>9,5</td>
<td>15,5</td>
<td>19,0</td>
<td>34,6</td>
<td>25,4</td>
<td>23,1</td>
<td>19,0</td>
</tr>
<tr>
<td>(M+m) °C</td>
<td>11,8</td>
<td>13,1</td>
<td>14,5</td>
<td>15,7</td>
<td>15,9</td>
<td>37,1</td>
<td>38,8</td>
<td>34,8</td>
<td>30,4</td>
<td>25,3</td>
<td>14,3</td>
</tr>
<tr>
<td>M°C.</td>
<td>10,6</td>
<td>15,7</td>
<td>16,0</td>
<td>23,6</td>
<td>24,5</td>
<td>29,4</td>
<td>34,6</td>
<td>29,4</td>
<td>28,7</td>
<td>25,4</td>
<td>17,3</td>
</tr>
<tr>
<td>2003</td>
<td>5,1</td>
<td>5,8</td>
<td>7,3</td>
<td>9,3</td>
<td>13,3</td>
<td>22,7</td>
<td>21,6</td>
<td>23,3</td>
<td>23,1</td>
<td>33,4</td>
<td>6,2</td>
</tr>
<tr>
<td>(M+m) °C</td>
<td>10,2</td>
<td>11,5</td>
<td>13,5</td>
<td>15,8</td>
<td>18,3</td>
<td>34,7</td>
<td>35,8</td>
<td>34,3</td>
<td>30,7</td>
<td>14,5</td>
<td>12,0</td>
</tr>
<tr>
<td>M°C.</td>
<td>13,4</td>
<td>18,4</td>
<td>19,4</td>
<td>24,3</td>
<td>21,0</td>
<td>28,7</td>
<td>31,5</td>
<td>25,3</td>
<td>25,9</td>
<td>29,3</td>
<td>19,8</td>
</tr>
<tr>
<td>2004</td>
<td>5,6</td>
<td>6,8</td>
<td>7,8</td>
<td>8,4</td>
<td>11,0</td>
<td>15,5</td>
<td>18,4</td>
<td>20,3</td>
<td>17,2</td>
<td>15,3</td>
<td>9,5</td>
</tr>
<tr>
<td>(M+m) °C</td>
<td>11,0</td>
<td>12,2</td>
<td>13,7</td>
<td>14,5</td>
<td>16,5</td>
<td>22,3</td>
<td>21,3</td>
<td>21,3</td>
<td>22,3</td>
<td>13,2</td>
<td>12,6</td>
</tr>
<tr>
<td>M°C.</td>
<td>24,9</td>
<td>14,1</td>
<td>18,1</td>
<td>21,6</td>
<td>25,6</td>
<td>30,1</td>
<td>22,5</td>
<td>22,2</td>
<td>29,4</td>
<td>29,3</td>
<td>22,0</td>
</tr>
<tr>
<td>2005</td>
<td>7,8</td>
<td>5,7</td>
<td>7,6</td>
<td>9,4</td>
<td>12,3</td>
<td>16,0</td>
<td>19,3</td>
<td>18,3</td>
<td>15,9</td>
<td>14,1</td>
<td>8,7</td>
</tr>
<tr>
<td>(M+m) °C</td>
<td>11,4</td>
<td>10,4</td>
<td>12,1</td>
<td>15,5</td>
<td>18,6</td>
<td>22,5</td>
<td>25,9</td>
<td>25,3</td>
<td>22,4</td>
<td>20,8</td>
<td>14,4</td>
</tr>
<tr>
<td>M°C.</td>
<td>15,0</td>
<td>18,9</td>
<td>19,3</td>
<td>20,3</td>
<td>29,5</td>
<td>30,8</td>
<td>33,4</td>
<td>39,7</td>
<td>37,5</td>
<td>35,4</td>
<td>34,1</td>
</tr>
<tr>
<td>2006</td>
<td>5,4</td>
<td>4,8</td>
<td>5,1</td>
<td>6,1</td>
<td>10,6</td>
<td>18,3</td>
<td>18,0</td>
<td>17,9</td>
<td>16,9</td>
<td>14,6</td>
<td>12,9</td>
</tr>
<tr>
<td>(M+m) °C</td>
<td>10,8</td>
<td>10,6</td>
<td>10,6</td>
<td>10,6</td>
<td>15,4</td>
<td>26,4</td>
<td>26,9</td>
<td>23,3</td>
<td>22,2</td>
<td>17,9</td>
<td>12,9</td>
</tr>
</tbody>
</table>

Tableau n° 1 - Températures moyennes maximales (M) et minimales (m) de 2002 à 2006 de la station de Dar El Beida exprimées en degrés Celsius (°C.).

(O.N.M., 2002 à 2006)

Les valeurs des températures moyennes mensuelles maximales M et minimales m de la partie centrale de la Mitidja sont mises dans le tableau n° 2.
<table>
<thead>
<tr>
<th>Température</th>
<th>Mois</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>M °C</td>
<td>13,5</td>
<td>20</td>
<td>22,5</td>
<td>21,1</td>
<td>27,2</td>
<td>31,9</td>
<td>30,3</td>
<td>31,4</td>
<td>30,9</td>
<td>28,3</td>
<td>21,9</td>
<td>13,5</td>
</tr>
<tr>
<td></td>
<td>m °C</td>
<td>3,7</td>
<td>4,5</td>
<td>6,5</td>
<td>7,4</td>
<td>12,4</td>
<td>18,3</td>
<td>29</td>
<td>16,5</td>
<td>18</td>
<td>15,5</td>
<td>11,6</td>
<td>7,4</td>
</tr>
<tr>
<td></td>
<td>(M + m) °C</td>
<td>11,1</td>
<td>12,3</td>
<td>14,6</td>
<td>14,9</td>
<td>19,2</td>
<td>25,1</td>
<td>29,9</td>
<td>25,3</td>
<td>24,5</td>
<td>21,9</td>
<td>18,8</td>
<td>13,0</td>
</tr>
<tr>
<td>2002</td>
<td>M °C</td>
<td>14,9</td>
<td>18</td>
<td>21,8</td>
<td>22,4</td>
<td>28,3</td>
<td>33,5</td>
<td>34,6</td>
<td>35,5</td>
<td>30,9</td>
<td>36,8</td>
<td>22,0</td>
<td>17,7</td>
</tr>
<tr>
<td></td>
<td>m °C</td>
<td>5,6</td>
<td>4,4</td>
<td>5,4</td>
<td>6,4</td>
<td>12,2</td>
<td>19,4</td>
<td>21,4</td>
<td>21,8</td>
<td>17,8</td>
<td>14,8</td>
<td>10,2</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>(M + m) °C</td>
<td>10,3</td>
<td>16,2</td>
<td>14,4</td>
<td>15,9</td>
<td>19,2</td>
<td>26,5</td>
<td>23</td>
<td>28,7</td>
<td>24,4</td>
<td>20,8</td>
<td>16,3</td>
<td>11,9</td>
</tr>
<tr>
<td>2003</td>
<td>M °C</td>
<td>17,9</td>
<td>19,7</td>
<td>18,5</td>
<td>21,9</td>
<td>22,5</td>
<td>30,3</td>
<td>32,5</td>
<td>34,3</td>
<td>32,3</td>
<td>28,9</td>
<td>19,6</td>
<td>16,7</td>
</tr>
<tr>
<td></td>
<td>m °C</td>
<td>5,4</td>
<td>6,5</td>
<td>7,1</td>
<td>8,3</td>
<td>12,5</td>
<td>16,5</td>
<td>19,3</td>
<td>2,1</td>
<td>13,5</td>
<td>14,8</td>
<td>7,5</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>(M + m) °C</td>
<td>11,7</td>
<td>12,1</td>
<td>15,1</td>
<td>13,7</td>
<td>25,4</td>
<td>25,9</td>
<td>25,4</td>
<td>25,4</td>
<td>15,6</td>
<td>11,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>M °C</td>
<td>15,5</td>
<td>13,9</td>
<td>19</td>
<td>21,3</td>
<td>27,3</td>
<td>31,2</td>
<td>33,6</td>
<td>33,1</td>
<td>29,4</td>
<td>28</td>
<td>20,3</td>
<td>15,7</td>
</tr>
<tr>
<td></td>
<td>m °C</td>
<td>1,2</td>
<td>2,4</td>
<td>5,5</td>
<td>9</td>
<td>11,5</td>
<td>17,3</td>
<td>18,8</td>
<td>16,3</td>
<td>15,4</td>
<td>13,9</td>
<td>8,4</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>(M + m) °C</td>
<td>3,4</td>
<td>8,2</td>
<td>13,6</td>
<td>15,4</td>
<td>12,6</td>
<td>24,3</td>
<td>26,2</td>
<td>24,7</td>
<td>22,4</td>
<td>21,0</td>
<td>14,4</td>
<td>10,9</td>
</tr>
</tbody>
</table>

Tableau n° 2 - Températures moyennes maximales (M) et minimales (m) de 2002 à 2006 de la station de Boufarik (centre de la Mitidja) exprimées en degrés Celsius (°C.)

(ITA F, 2002 à 2006)

- : Données manquantes.

Les valeurs des températures moyennes mensuelles maximales M et minimales m de la partie occidentale de la plaine sont rassemblées dans le tableau n° 3.
Entre 1998 et 2001, c’est le mois d’août qui apparaît le plus chaud. Ses températures moyennes d’une année à l’autre sont comprises entre 25,1 et 27 °C. En effet, le mois le plus froid est janvier en 1998 et en 2000 avec des valeurs moyennes mensuelles respectivement égales à 13,6 et 10,7 °C. C’est décembre qui apparaît le mois le plus froid en 1999 avec 12,1 °C. et en 2001 avec 11,8 °C. (Tab. 3).

<table>
<thead>
<tr>
<th>Année</th>
<th>Mois</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Max °C</td>
<td>15,5</td>
<td>13,9</td>
<td>13</td>
<td>21,8</td>
<td>27,3</td>
<td>31,2</td>
<td>33,6</td>
<td>32,1</td>
<td>39,4</td>
<td>28</td>
<td>30,3</td>
<td>15,7</td>
</tr>
<tr>
<td></td>
<td>Min °C</td>
<td>1,2</td>
<td>2</td>
<td>5,5</td>
<td>9</td>
<td>11,9</td>
<td>17,3</td>
<td>13,8</td>
<td>16,3</td>
<td>15,4</td>
<td>12,9</td>
<td>3,4</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>Diff.</td>
<td>8,4</td>
<td>12,4</td>
<td>5,5</td>
<td>12,3</td>
<td>13,4</td>
<td>15,2</td>
<td>19,8</td>
<td>25,3</td>
<td>28,6</td>
<td>16,3</td>
<td>10,7</td>
<td>19,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Année</th>
<th>Mois</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Max °C</td>
<td>14,5</td>
<td>15,5</td>
<td>20,3</td>
<td>19,4</td>
<td>19,4</td>
<td>12,4</td>
<td>15,4</td>
<td>21,4</td>
<td>21,8</td>
<td>17,8</td>
<td>14,8</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td>Min °C</td>
<td>5,3</td>
<td>4,4</td>
<td>5,5</td>
<td>9,4</td>
<td>12,4</td>
<td>15,4</td>
<td>21,4</td>
<td>21,8</td>
<td>17,8</td>
<td>14,8</td>
<td>10,2</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>Diff.</td>
<td>9,2</td>
<td>10,1</td>
<td>14,9</td>
<td>12,9</td>
<td>12,9</td>
<td>11,9</td>
<td>15,9</td>
<td>19,6</td>
<td>19,8</td>
<td>13,9</td>
<td>11,9</td>
<td>4,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Année</th>
<th>Mois</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Max °C</td>
<td>14,5</td>
<td>14,5</td>
<td>19,5</td>
<td>21,9</td>
<td>23,5</td>
<td>29,8</td>
<td>33,5</td>
<td>34,8</td>
<td>32,2</td>
<td>21,9</td>
<td>19,5</td>
<td>15,8</td>
</tr>
<tr>
<td></td>
<td>Min °C</td>
<td>5,6</td>
<td>6,5</td>
<td>7,1</td>
<td>8,2</td>
<td>12,5</td>
<td>16,6</td>
<td>19,3</td>
<td>21</td>
<td>18,5</td>
<td>14,5</td>
<td>7,5</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td>Diff.</td>
<td>9,9</td>
<td>12,6</td>
<td>12,6</td>
<td>13,7</td>
<td>14,3</td>
<td>14,2</td>
<td>21,2</td>
<td>22,3</td>
<td>21,8</td>
<td>12,5</td>
<td>12,3</td>
<td>11,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Année</th>
<th>Mois</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Max °C</td>
<td>15,5</td>
<td>15,5</td>
<td>13</td>
<td>21,8</td>
<td>27,3</td>
<td>31,2</td>
<td>33,6</td>
<td>32,1</td>
<td>39,4</td>
<td>28</td>
<td>30,3</td>
<td>15,7</td>
</tr>
<tr>
<td></td>
<td>Min °C</td>
<td>1,2</td>
<td>2</td>
<td>5,5</td>
<td>9</td>
<td>11,9</td>
<td>17,3</td>
<td>13,8</td>
<td>16,3</td>
<td>15,4</td>
<td>12,9</td>
<td>3,4</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td>Diff.</td>
<td>13,7</td>
<td>13,6</td>
<td>13,1</td>
<td>20,1</td>
<td>20,3</td>
<td>23,9</td>
<td>24,2</td>
<td>22,7</td>
<td>28</td>
<td>26,9</td>
<td>16,9</td>
<td>19,6</td>
</tr>
</tbody>
</table>

Tableau n° 3 - Températures mensuelles moyennes maximales (M) et minimales (m) par année de 1998 à 2001 de la station de Bouharoun (partie occidentale de la Mitidja)

(O.N.M., 1998 à 2001)

1.3.2. – Pluviométrie

Les pluies interviennent principalement en automne, en hiver et au printemps. L’été est généralement sec. C’est d’ailleurs là une caractéristique du climat méditerranéen qualifié de xérophile (EMBERGER, 1971). L’eau est essentielle pour le maintien et le

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& I & II & III & IV & V & VI & VII & VIII & IX & X & XI & XII & Totaux \\
\hline
2002 & 29 & 15 & 34 & 39 & 14 & 1 & 0 & 54 & 12 & 54 & 145 & 102 & 489 \\
\hline
2003 & 300 & 133 & 22 & 87 & 29 & 0 & 0 & 28 & 40 & 25 & 98 & 0 & 736 \\
\hline
2004 & 40 & 46 & 29 & 56 & 149 & 1 & 2 & 0 & 12 & 84 & 110 & 109 & 678 \\
\hline
2005 & 35 & 115 & 10 & 26 & 1 & 0 & 0 & 15 & 73 & 137 & 0 & 532 \\
\hline
2006 & 127,5 & 38,0 & 26,2 & 3,0 & 82,1 & 1,7 & 0,6 & 5,9 & 38,4 & 17,4 & 21,3 & 92,4 & 608,5 \\
\hline
\end{array}
\]

Tableau n° 4 - Pluviometrie mensuelle des années allant de 2002 à 2006 à Dar El Beida (O.N.M., 2002 à 2006)

La region d’etude presente une grande variabilite des precipitations entre les mois et entre les années. Le maximum de precipitations enregistre pour la partie orientale est de 736 mm au cours de 2003 (Tab. 4) et le minimum annuel est de 489 mm note en 2002. La derniere valeur des precipitations citee se situe en dessous de la limite inferieure de la fourchette des chutes de pluie pour la Mitidja, soit 600 à 900 mm par an (MUTIN, 1977).

En effet le regime de pluies est de type mediterraneen avec un minimum en ete. La moyenne des hauteurs des pluies diminue brusquement des juin. Les mois les plus secs sont juin, juillet et aout comme ce fut le cas en 2005. Le maximum des precipitations est note en janvier 2003 avec 200 mm (Tab. 4). Il faut rappeler l’importance de la presence de l’eau pour les plantes et pour les reactions biochimiques. La connaissance des quantites de pluies reches permet de prévoir les moments où il faudra apporter un complement d’eau par irrigation.

Les valeurs mensuelles des chutes de pluie de la partie centrale de la plaine de la Mitidja sont placees au sein du tableau 5.

Egalement les sommes des precipitations mensuelles dans la partie centrale de la Mitidja sont comparables a celles de la partie orientale de la Mitidja. Il est a noter un maximum de pluviometrie en 2003 avec 735,3 mm et un minimum egal a 546,2 mm en 2002 (Tab. 5). Les mois les plus secs sont juin et juillet des années 2003, 2005 et 2006. Cependant le mois le plus pluvieux est mentionne en janvier 2003 avec une hauteur de 187,9 mm.
Tableau n° 5 – Hauteurs des précipitations mensuelles exprimées en mm, année par année de 2002 à 2006 à Boufarik (partie centre de la Mitidja)

(ITAF, 2002 à 2006)
- : Données manquantes

Les hauteurs mensuelles des précipitations dans la partie occidentale de la Mitidja sont mentionnées dans le tableau 6.

Pour ce qui est de la partie occidentale de la Mitidja et à partir des données recueillies entre 1998 et 2001, les relevés pluviométriques mettent en évidence que l'Ouest de la Mitidja reçoit moins de précipitations par rapport au centre et à l'Est de la plaine, puisque les hauteurs de précipitations ne dépassent guère 632,6 mm par an en 1999 alors que le minimum par an n’est que de 267 mm en 2000. Par ailleurs la région a connu une période de sécheresse en mars 2001 durant lequel les précipitations sont nulles (Tab. 6).

Tableau n° 6 - Pluviométrie mensuelle de l’année 1998 à 2001 de Bouharoun

(O.N.M., 1998 à 2001)

1.4. – Synthèse climatique

Afin de classer la Mitidja parmi les divers types de climats, les deux variables climatiques, températures et pluviométrie sont utilisées. En région méditerranéenne, le plus souvent ce
sont le diagramme ombrothermique de Bagnous et Gaussen et le quotient pluviothermique d'Emberger qui sont les plus employés (DAJOZ, 1982).

1.4.1. – Diagramme ombrothermique

Ce diagramme permet d’exploiter les données faisant intervenir les précipitations et les températures. GAUSSEN considère que la sécheresse s’établit lorsque pour un mois donné, le total des précipitations P exprimée en millimètres est inférieur au double de la température T exprimée en degrés Celsius, soit P = 2 T (DAJOZ, 1971). A partir de cette hypothèse il est possible de tracer des diagrammes ombrothermiques ou pluviométriques dans lesquels on porte en abscisses les mois et en ordonnées les températures moyennes mensuelles à gauche et les hauteurs de pluie à droite avec une échelle double par rapport à celle des températures (DAJOZ, 1982).

Il est à remarquer d’après les diagrammes ombrothermiques de la partie orientale de la Mitidja que la période humide la plus longue est notée en 2004 (Fig. 3). Elle s’étend sur presque 8 mois de la mi-octobre jusqu’au début de juin. La saison sèche dure un peu plus de 4 mois. Elle va du début de juin jusqu’en octobre. En 2003 et 2005, la période humide s’étend sur presque sur 7 mois, du début octobre jusqu’à la mi-avril en 2005 et de la mi-octobre jusqu’au début de mai en 2003 (Fig. 3). Les autres années 2002 et 2006 connaissent une période de sécheresse assez importante. En effet les années 2002 et 2006 présentent les périodes de sécheresse les plus longues soit 8 mois, qui vont de février (2002) ou de mars (2006) jusqu’en octobre ou en novembre. Elles sont entrecoupées par quelques semaines humides en mars-avril (2002) et en mai (2006) (Fig. 3).

Les diagrammes ombrothermiques de la partie centrale se rapprochent de ceux de Dar El Beida dont la période humide s’étale sur 8 mois en 2004 alors qu’elle n’est que de 7 mois pendant les années
Fig. 3 – Diagramme ombrothermique de Dar El Beida de 2002 à 2006

2002 et 2003 et 6 mois en 2005. Cependant durant l’année 2002, la période humide est entrecoupée par quelques semaines de sècheresse en février (Fig. 4).

Concernant la partie occidentale de la Mitidja, les diagrammes ombrothermiques révèlent que la saison humide ne s'étend que sur 3 mois seulement en 2000 allant du début d'octobre jusqu'en janvier. De ce fait cette même année, la période sèche apparaît très longue soit 9 mois allant du début de janvier jusqu'à la fin de septembre. En 1999, la période humide ne dure que 5 mois et demi. Elle s'étale de la fin d'octobre jusqu'au début d'avril (Fig. 5). Comme en l'an 2000, en 2001 la période humide est courte. Elle ne dure que 4 mois soit de la fin d'octobre jusqu'à la fin de février. Il faut souligner que bien qu'il ne s'agit pas des mêmes années, il semble que la partie occidentale de la Mitidja est plus sèche que les régions de Dar El Beida et de Boufarik.
1.4.2. – Climagramme pluviothermique d’Emberger

D’après DAJOZ (1971) le climagramme d’Emberger résume le bioclimat d’une station donnée par trois paramètres fondamentaux en climat méditerranéen. Ce sont la pluviométrie annuelle (P), la moyenne des températures maxima (M) du mois le plus chaud et la moyenne des températures minima (m) du mois le plus froid. En effet, M et m représentent les températures moyennes extrêmes supportées par les organismes. Le quotient pluviométrique d’Emberger fait intervenir le rapport des précipitations à la température. Ceci permet de situer la région d’étude dans l’étage bioclimatique qui lui correspond. Ce quotient est donné d’après STEWART (1975) par la formule suivante :

\[Q_3 = \frac{3.43 \times P}{M - m} \]

Les valeurs du quotient combinées à celles de m sur le climagramme d’Emberger, permettent de déterminer l’étage bioclimatique et ses variantes. Les valeurs de ce quotient des parties orientale (Q3 = 70,9), centrale (Q3 = 64,4) et occidentale (Q3 = 74,0) de la région d’étude rapportées dans le climagramme d’Emberger montrent que les parties ouest et est de la Mitidja appartiennent à l’étage bioclimatique subhumide inférieur à hiver tempéré alors que la région centre fait partie du semi-aride supérieur également à hiver tempéré (Fig. 6).

1.5. – Données bibliographiques sur les facteurs biotiques de la Mitidja

Les données bibliographiques sur la végétation et sur la faune en particulier sur l’avifaune de la région d’étude sont présentées.
Fig. 4 – Diagramme ombrothermique de Boufarik de 2002 à 2005
Fig. 5 – Diagramme ombrothermique de Bouharoun de 1998 à 2001
1.5.1. – Végétation de la Mitidja

1.5.2. – Faune aviaire de la Mitidja

Chapitre II – Matériel et méthodes

Le présent chapitre s’intéresse dans un premier temps au choix des stations d’étude et aux méthodes adoptées pour l’étude du peuplement avien. Dans un second temps des techniques appropriées sont développées pour l’étude d’espèces en pleine expansion. Dans une troisième partie l’écologie trophique de quelques espèces d’oiseaux peu étudiées dans la région est abordée. À la fin de ce chapitre les techniques d’exploitation des résultats sont présentées.

2.1. – Choix des stations d’étude

Le milieu d’étude correspond à la zone la plus fertile et la plus soumise aux exploitations et aux activités agricoles dans le nord de l’Algérie. Malheureusement cette région subit une très grande pression anthropique. La région d’étude est caractérisée par de vastes surfaces cultivées, consacrées aux productions maraîchères, céréalières, fourragères, fruitières, viticoles et industrielles. Parallèlement à ces cultures, il faut noter l’importance des haies, des arbres d’alignements et des brise-vent, qui caractérisent le paysage de la région. Les espèces présentes le plus souvent sont *Casuarina torulosa*, *Cupressus sempervirens*, *Eucalyptus camaldulensis*, *Ceratonia siliqua*, *Pyracantha coccinea*, *Fraxinus excelsior*, *F. angustifolia*, *Platanus orientalis* et *Olea europaea*.

En effet, dans les trois parties orientale, centrale et occidentale qui constituent la
Mitidja des stations d’échantillonnage sont choisies afin d’avoir le maximum de données et d’informations sur l’avifaune de la plaine de la Mitidja. Les stations d’échantillonnages prises en considération sont au nombre de douze. Elles sont réparties de l’est vers l’ouest par Réghaïa (1), Rouiba (2), Oued Smar (3), Meftah (4) et Cherarba (5) qui concernent la partie orientale de la Mitidja. La partie centrale est constituée de Baraki (6), d’Aïn Naadjia (7), de Chebli (8), de Birtouta (9) et de Boufarik (10). Enfin la partie occidentale est représentée par Blida (11) et Bourkika (12) (Fig. 7).

Les stations (1), (3), (4), (6), (7), (9) et (11) se retrouvent à proximité des limites naturelles de la plaine. En effet, celles qui se localisent au sud de la plaine sont influencées par la barrière formée par l’Atlas tellien. Cependant celles qui se situent dans le nord de la Mitidja subissent l’influence de l’urbanisation de l’est vers l’ouest. En revanche les stations (2), (5), (8), (10) et (12) se localisent dans le cœur de la plaine.

La description des stations d’échantillonnage depuis la partie orientale jusqu’à la partie occidentale de la Mitidja est résumée de la manière suivante:

![Fig.7 – Localisation des 12 stations d’études en Mitidja (□)](image)

Réghaïa : elle est représentée par un marais qui se situe à la limite nord-est de la plaine de la Mitidja (36° 48’ N., 3° 15’ E.). L’échantillonnage est réalisé dans un maquis d’*Olea europaea*, de *Phillyrea angustifolia*, de *Rhamnus alaternus* et de *Smilax aspera* aux abords du plan d’eau de Réghaïa (Fig. 8a).

Rouiba : dans cette station de petits vergers d’agrumes, citronniers et orangers et de rosacées, pêchers et poiriers entourée par de vastes surfaces ouvertes destinées essentiellement au maraîchage (36° 46’ N., 3° 16’ E.). Cependant de part et d’autre des
lignées de pacaniers *Carya tomentosa* et des arbres d’alignement comme le cyprès *Cupressus sempervirens* sont mentionnés (Fig. 8b).

Fig. 8a – Station d’échantillonnage du Marais de Réghaïa

Oued Smar : cette station est une mosaïque de différents types de paysages (36° 41’ N., 3° 08’ E.). Des terres céréalières voisinent avec l’oued Smar au sud et avec la décharge publique. Du côté nord de la station, une petite forêt constituée d’une association de pins *Pinus halepensis*, d’*Eucalyptus camaldulensis* et d’*Olea europaea* est présente (Fig. 9a).

Meftah : cette station proche de Djebel Zerrouala de l’Atlas tellien, est un ensemble de vergers de poiriers *Pirus communus* séparés par des brise-vent composés de filaos, de quelques frênes et d’oliviers dispersés (36° 37’ N., 3° 13’ E.). Les terres ouvertes sont consacrées surtout aux cultures potagères. Il est à noter également la présence de l’oued El Makhfi lequel est bordé par des *Eucalyptus* et des *Pistacia lentiscus*. En effet, l’empreinte rurale est marquée dans cette localité (Fig. 9b).

Cherarba : La station se situe près de Ramadhnia, précisément là où les activités agricoles sont dominées par le maraîchage et l’arboriculture fruitière avec des vergers de citronniers *Citrus limon* (36° 41’N., 3° 09’E). Les parcelles sont délimitées par des cyprès. L’urbanisation est en pleine expansion dans cette zone au détriment des terres à vocation agricole (Fig. 10a).

Baraki : cette station est un milieu ouvert (36° 42’ N., 3° 08’ E.), consacrée essentiellement aux céréales tel que l’orge. Elle se situe à proximité d’un maquis épars bordé d’*Arundo donax*, de pieds d’*Acacia* et d’*Olea europaea*. Sur les rives de l’oued
Adda plusieurs espèces d’arbres voisinent appartenant à *Fraxinus sp.*, à *Populus alba*, à *Olea europaea* et à *Ulmus campestris* (Fig. 10b).

Ain Naadja : elle appartient à un milieu formé par des terres humides ce qui est dû à l’absence de l’entretien du réseau de drainage (36° 42’ N., 3° 04’ E.). De ce fait le roseau *Arundo donax* pousse intensément. Il est à noter la présence d’un verger de néfliers *Eriobotrya japonica* bordé de cyprès, de palmiers des Canaries et d’oliviers. Ain Naadja se situe à la limite méridionale de l’agglomération algéroise et de ce fait soumise à l’influence de la capitale (Fig. 11a).

Birtoua : la station se localise au niveau du piémont sud du Sahel (36° 38’ N., 3° 02’ E). Elle se caractérise par de vastes parcelles de céréales, flanquées de part et d’autre, par des vergers de citronniers *Citrus limon*, de pêchers *Prunus domestica* et de pommiers ayant comme brise-vent des cyprès *Cupressus sempervirens pyramidalis* et *C. sempervirens horizontalis*. Aux alentours des habitations, des bosquets d’*Eucalyptus*, véritables eucalyptaisse dressent mêlées à quelques sujets de *Phoenix canariensis* (Fig. 11b).

Fig. 9a – Station d’échantillonnage de Oued smar
Fig. 10a – Station d’échantillonnage de Cheraba

Fig. 10b – Station d’échantillonnage de Baraki
Fig. 11a – Station d’échantillonnage d’Ain Naadja

Fig. 11b – Station d’échantillonnage de Birtouta

Chebli : Cette station ressemble à celle de Birtouta (36° 35’ N., 3° 01’ E.) dont les
vergers d’agrumes à *Citrus aurantium* et d’abricotiers (*Prunus armeniaca*) sont mentionnés. Ces derniers sont bordés de cyprès, de quelques eucalyptus et de palmiers des Canaries. Il est à noter la présence de haies de *Crataegus pyracantha* qui bordent les routes et qui limitent les vergers (Fig. 12a).

Boufarik : Cette station (36° 34’ N., 2° 55’ E) est caractérisée par de vastes vergers d’agrumes à *Citrus deliciosa* et à *C. aurantium* séparés par des alignements de cyprès et quelquefois par des févrés d’Amérique *Gleditschia triacanthos*. Et à la périphérie il est à noter des filaos *Casuarina torulosa*. Cependant des haies d’*Acacia horrida* et d’*Olea europaea* bordent les routes. Du côté nord de la station, des néfliers du Japon et des pacaniers se retrouvent. Quelques arbres d’ornement comme le *Phoenix canariensis*, le *Cocos sp* et le *Tipuana speciosa* sont à mentionner près de la zone périurbaine (Fig. 12b).

Blida : cette station proche du Djebel Feraoun se localise près de Ouled Yaich (36° 30’ N., 2° 52’ E.). Elle est formée d’un maquis bordé d’oliviers et de parcelles de céréales. Ici les brise-vent sont représentés essentiellement par le filao (*Casuarina*). Et ça et là, se dressent des eucalyptus en bosquets ou en alignement jusqu’au niveau de l’oued Guerrouaou. Il est à souligner la présence du frêne *Fraxinus excelsior* et du Platane *Platanus orientalis* au bord des routes(Fig. 13a).

Bourkika : cette station se trouve dans la zone de rétrécissement de la Mitidja (36° 30’ N., 2° 29’ E.). Elle est située entre Djobel el Bitri au nord et Djobel Gueroua au sud auquel fait suite la Chabot el Guetaa. Dans cette localité de vastes surfaces destinées à la viticulture et à la céréalculture sont signalées. L’oued Bourkika traverse la station qui se caractérise au sol par *Asparagus acutifolius* dominé par l’alaterne *Rhamnus alaternus*, le laurier rose *Nerium oleander* et par *Crataegus monogyna*. Là des eucalyptus, des oliviers, des frênes et des tamarix africains poussent abondamment (Fig. 13b).

2.2. – Méthodes d’étude du peuplement avien de la région d’étude

Dans le but d’avoir un certain nombre de paramètres écologiques de l’avifaune fréquentant la région, des inventaires ornithologiques se montrent nécessaires. Dans ce but il faut également tenir compte du fait que la région à échantillonner est vaste et fortement anthropisée.
Fig. 12a – Station d'échantillonnage de Chebli

Fig. 12b – Station d'échantillonnage de Boufank
Fig. 13a – Station d’échantillonnage d’Ouled Aich

Fig. 13b – Station d’échantillonnage de Bourkika
2.2.1. - Méthode d’analyse du peuplement avien selon les origines biogéographiques

La distribution des espèces aviennes signalées dans la région d’étude est étudiée en fonction de leur composition biogéographique suivant la classification de VOOUS (1960). Cet auteur parle de 13 types fauniques au sein des populations d’oiseaux. En effet BLONDEL et al. (1978) regroupe ces types fauniques en 5 principales catégories. Elles sont qualifiées de méditerranéenne, de holactique, de paléarctique, d’européenne et d’européo-turkestanienne (Tab. 7).

Tableau n° 7 – Composition faunistique selon les origines biogéographiques

<table>
<thead>
<tr>
<th>Catégories fauniques</th>
<th>Types fauniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méditerranéenne</td>
<td>Méditerranéen, Turkestano-méditerranéen, Paléoxérique, paléoëromontagnard, Indo-africain et Ethiopien.</td>
</tr>
<tr>
<td>Holarctique</td>
<td>Holarctique, vieux Monde (ancien monde) et Cosmopolite</td>
</tr>
<tr>
<td>Paléarctique et Paléo-montagnarde (Boréale ou montagnarde)</td>
<td>Paléarctique et Paléo-montagnard</td>
</tr>
<tr>
<td>Européenne</td>
<td>Européen</td>
</tr>
<tr>
<td>Européo-Turkestanienne</td>
<td>Européo-turkestanien</td>
</tr>
</tbody>
</table>

2.2.2. – Méthode des échantillonnages fréquentiels et progressifs (E.F.P.)

Le présent paragraphe porte sur la description de la méthode des E.F.P., sur ses avantages et ses inconvénients.

2.2.2.1. – Description de la méthode des E.F.P.

enregistrées dans un rayon de 50 mètres. Il est important d’être discret sur le terrain lors
de l’échantillonnage. Dans la présente étude, 180 relevés sont réalisés depuis le 14
février 2004 jusqu’au 28 décembre 2006. Ils sont répartis en 62 relevés effectués dans la
partie orientale, en 61 relevés faits dans la partie centrale et en 57 relevés dans la partie
occidentale de la plaine de la Mitidja. Cependant le nombre de relevés par station varie
entre 7 et 33. Nous avons réalisé 7 E.F.P. à Ain Naadja et autant à Chebli, 8 à Oued
Smar, 9 à Birtouta, 10 à Réghaïa, 14 à Meftah, 14 à Cherarba, 14 également à Baraki, 16
à Rouiba, 24 à Boufarik, autant à Blida et 33 à Bourkika. En effet, les E.F.P. sont
effectués de 9h 05’ à 17h 12’ en hiver, de 6h 17’ à 18h 00’ au printemps, de 9h 00’ à 17h
50’ en été et enfin de 9h 10’ à 15h 00’ en automne.

2.2.2.2. – Avantages de la méthode des E.F.P.

Cette méthode présente plusieurs avantages puisqu’elle est peu coûteuse et simple dans
son application. C’est une technique simplifiée par rapport à celle des indices ponctuels
d’abondance dont elle est issue. Elle peut être employée à n’importe quel moment de la
journée aussi bien le matin que durant l’après-midi et même en dehors de la période de
reproduction. En effet, l’échantillonnage fréquentiel et progressif peut répondre à plusieurs
objectifs recherchés. Il s’agit de faire des inventaires des espèces d’oiseaux présentes sur
le territoire du cadre d’étude afin de dresser la liste de l’ensemble des espèces
contactées. Cette méthode permet d’avoir accès rapidement à des informations qualitative
et à l’évaluation des effectifs des populations aviaires. On peut étudier la répartition des
espèces et leur distribution en fonction des variables écologiques du milieu. Dans le cas
présent, l’extension de l’urbanisation est à prendre en considération. En effet, il est utile
d’étudier l’évolution de certaines espèces dans le temps et dans l’espace selon le type du
milieu.

2.2.2.3. – Inconvénients de la méthode des E.F.P.

L’emploi de cette méthode ne permet pas d’obtenir des densités, car il s’agit d’un relevé
de présence ou d’absence. Il donne seulement un inventaire ou une richesse du
peuplement avien dans la station d’étude (OCHANDO, 1988). Cependant pour les
passereaux, l’emploi de cette méthode ne pose pas de problème. Il en est de même pour
les rapaces diurnes, puisque le nombre d’individus est relativement faible. Par contre le
problème réside pour les espèces à grand canton tels que les oiseaux d’eau, les
hirondelles et les martinets, ou encore les étourneaux sansonnet et les Ardéidés. Dans
cet cas, il suffit seulement de mentionner approximativement le nombre de d’individus de
l’espèce pour avoir des informations qui peuvent servir ultérieurement. Cependant,
l’application des E.F.P. exige de bonnes conditions de travail comme le beau temps, à la
rigueur une faible pluie passagère et l’absence de vent. La distance minimale à parcourir
pour passer d’un relevé à un autre doit être assez important surtout dans les milieux
ouverts ou semi-ouvrents soit 200 à 300 m.

2.2.3. – Méthode des plans quadrillés ou du quadrat
La description de la méthode des plans quadrillés, les avantages et les inconvénients de cette méthode sont développés dans cette partie.

2.2.3.1. – Description de la méthode du quadrat

Il s’agit de délimiter dans un milieu donné un échantillon représentatif de la végétation mais aussi de l’avifaune. A l’intérieur de la zone échantillon, il faut établir un réseau de sentiers balisés qui sont reportés sur un plan (FROCHOT, 1975).

2.2.3.2. – Avantages de la méthode du quadrat

Cette méthode de dénombrement d’après BLONDEL (1969) est de loin la plus sûre. Elle reste l’une des techniques les plus précises dans l’arsenal disponible aujourd’hui pour obtenir directement des densités des peuplements d’oiseaux. Bien appliquée, elle donne des résultats dont l’erreur ne dépasse pas 10 %.

2.2.3.3. – Inconvénients de la méthode du quadrat

Cette méthode demande beaucoup de temps et de bonnes conditions d’observations. Dans des milieux accidentés, sa mise en œuvre est très difficile et dans certains cas elle apparaît impossible. Comme pour le cas des E.F.P., l’emploi du quadrat pose également des problèmes puisque cette technique à l’origine n’était pas destinée pour l’étude des espèces à grands cantons. Devant une telle situation, il serait utile de signaler l’espèce et voir au moins ses limites territoriales par rapport aux autres espèces.

2.3. – Méthodes d’étude des espèces introduites ou en
pleine expansion

Parmi les oiseaux vus en Mitidja, certains retiennent notre attention. Les plus intéressants sont les Psittacidae comme Psittacula krameri, les Columbidae avec Streptopelia decaocto et Columba palumbus et les Ardeidae comme Bubulcus ibis.

2.3.1. – Cas du Perruche à collier Psittacula krameri

Pour ce qui concerne la Perruche à collier trois aspects sont à prendre en compte. Ce sont d’abord la méthode de dénombrement, le suivi des populations de Psittacula krameri et la répartition géographique de l’espèce. Ensuite, la méthode d’étude de la progression de l’espèce dans l’Algérois est développée. Le troisième aspect concerne l’étude du comportement trophique et du choix des plantes nourricières de la Perruche à collier. Enfin la méthode d’étude du nombre de contacts avec de P. krameri par tranche horaire est présentée.

2.3.1.1. – Méthode de dénombrement, suivi des populations de Psittacula krameri et répartition géographique de l’espèce

Depuis les premières observations faites sur ce Psittacidae, des mesures ont été prises en considération afin d’avoir le maximum d’informations sur l’espèce. Compte tenu du fait que l’observation directe n’est pas suffisante pour suivre l’oiseau sur le terrain, nous nous sommes appuyés sur un travail de prospection de manière à collecter le maximum d’informations sur la présence de l’espèce et sur les sites qu’elle fréquente.

Des renseignements sont collectés ainsi sur l’espèce depuis 1988 jusqu’en 2006, d’abord dans l’Algérois ensuite dans la plaine de la Mitidja et enfin dans d’autres régions du territoire national. Dans ce cadre, nous nous sommes appuyés sur les remarques faites régulièrement par 23 observateurs dans 20 sites et par 6 autres mobiles qui ont visité occasionnellement 12 sites plus excentrés par rapport à la région d’étude. Certains enquêteurs se déplacent entre plusieurs sites fixes. De ce fait ils risquent d’être comptés plusieurs fois dans le tableau 8.
Tableau n° 8 - Répartition des enquêteurs en fonction des zones d’étude et des sites d’observation

Nb. d’observ. : Nombre d’observateurs

Au cours de la période des dénombrements et des prospections tous les contacts visuels et auditifs avec la Perruche à collier ainsi que les informations recueillies auprès de la population locale sont enregistrés. Les paramètres qui retiennent notre attention sont le nombre d’individus, la direction de vol, les types de perchoirs choisis par le Psittacidae et le comportement de prise de nourriture. Par la suite des déplacements fréquents sur le terrain là où l’espèce serait présente sont faits. Des sorties plus régulières sont effectuées dans les sites où Psittacula krameri est signalée. Les directions des déplacements de la Perruche à collier dans la région depuis l’Algérois, même en dehors de celle-ci sont prises en compte dans le but de compléter la carte de répartition de l’espèce à l’échelle nationale. Une attention particulière est réservée lors des visites pour les parcs, les grands jardins, les milieux accidentés telles que les falaises et les zones protégées notamment le marais de Réghaïa et les vergers où l’espèce pourrait aller.
chercher ses aliments.

2.3.1.2 – Méthode d’étude de la progression dans l’espace des effectifs de la Perruche à collier

2.3.1.3. - Méthode d’étude de l’activité de *Psittacula krameri* par tranche horaire et par mois

Il s’agit de noter chaque jour le nombre de contacts avec espèce heure par heure. Les relevés sont effectués depuis le matin à 6h 00’ jusqu’au soir à 19h 00’. En effet, la durée de la période expérimentale est de 4 mois. Elle s’est étalée de février 2005 (7h 41’ à 18h 26’) à mai 2005 (5h 51’ à 19h 41’). Certains paramètres sont pris en considération comme la direction de vol, le lieu d’observation et la température. Ce travail a permis l’accès à des informations sur les manifestations de l’espèce et sur ses effectifs en fonction du temps.

2.3.1.4. - Méthode d’étude sur le comportement trophique de la Perruche à collier et sur les plantes nourricières choisies par elle

Dans le but d’essayer de comprendre le processus qui a fait que la Perruche à collier a réussi à se maintenir et même à proliférer, il nous a semblé nécessaire de se pencher sur son comportement trophique. Il a fallu multiplier les séances d’observations pour connaître les habitudes alimentaires de ce Psittacidae, car la difficulté vient du fait qu’il a tendance à fréquenter les parties les plus hautes des arbres d’une part et qu’il est difficile de le repérer à chaque fois à cause de l’homochromie de son plumage avec la teinte verte des feuilles des arbres d’autre part. Il se manifeste rarement par des cris lors de la prise de la nourriture. Toutes les observations sur les prises de nourriture sont notées en tenant compte du lieu, de la date et des particularités de l’aliment prélevé tels que jeune feuille, fruit mûr ou encore vert, graine, fleur ou thalle.

2.3.2. – Cas de la Tourterelle Turque *Streptopelia decaocto* dans la région d’étude

Parmi les tourterelles présentes dans la plaine de la Mitidja, *Streptopelia decaocto* fait
également l’objet de la présente étude. Il est à rappeler que cette espèce est nouvelle non seulement dans la région mais aussi en Algérie. De ce fait il nous semble intéressant d’étudier son expansion, sa répartition et sa place parmi les autres espèces de Columbidae.

2.3.2.1. – Méthode d’étude de l’extension de Steptopelia decaacto

Cette partie s’appuie sur une enquête auprès de différents observateurs et témoins. La date de départ prise en considération pour ces investigations se situe en 1992. Elle s’appuie aussi sur l’évolution des effectifs de cette espèce dans une station privilégiée, celle des jardins de l’institut national agronomique d’El Harrach où les populations avies sont suivies régulièrement dans une aire de 10 ha depuis 1992 à 2006 (voir le principe de la méthode). Par ailleurs quelques relevés sont effectués en dehors de la période de reproduction, puisque les parades sont encore observées en septembre et en octobre. Pratiquement la Tourterelle turque chante tout au long de l’année. En effet cette espèce s’adapte parfaitement au milieu algérois et se multiplie rapidement ce qui nous amené a suivre les fluctuations de sa population.

2.3.2.2.- Répartition de la Tourterelle turque dans la région d’étude

En milieux urbains, suburbains, ruraux et naturels Steptopelia deacacto se comporte différemment. Dans la région d’étude, en plus des échantillonnages fréquentiels progressifs (E.F.P.) réalisés dans les différentes stations, des prospections et des observations sont faites dans le reste de la région y compris les zones urbaines et interurbaines. Les données recueillies sont répertoriées sur une carte afin de préciser la répartition de l’espèce.

2.3.3 – Cas du Pigeon ramier Columba palumbus

2.3.3.1. – Méthode d’étude de l’évolution des effectifs et de l’extension de Columbapalumbus

Comme pour la Tourterelle turque, le Pigeon ramier est suivi. Habituellement ce Columbidae ne fréquente que les parcs et les grands jardins. Et il demeure absent dans les zones urbaines. Pourtant actuellement l’espèce semble exister un peu partout et niche même sous les toits des immeubles. C’est cette tendance à occuper une grande diversité de sites qui nous a amené à suivre l’évolution de ses effectifs et les zones qu’il fréquente dans la plaine.
2.3.3.2. – Méthode d’étude des déplacements des populations de *Columbia palumbus* vers les lieux trophiques en Mitidja

Au cours de l’année des passages des palombes sont observées au dessus de la plaine de la Mitidja avec des variations saisonnières. Afin de préciser le sens des déplacements des groupes de pigeons ramiers, Baraki est choisie comme point d’observation (Fig. 8). Le choix de cette station est commandé par sa position médiane entre l’Atlas tellien au sud et la Méditerranée au nord. Baraki se situe également à la limite entre les parties centrale et orientale de la Mitidja. La méthode de travail consiste pour l’opérateur à se placer tourné vers le nord. Par la suite, on procède au comptage des nombres d’individus en fonction de l’heure et de la direction du déplacement des pigeons ramiers. La période du déroulement des relevés est fixée de mars à mai 2006 avec un nombre de relevés égal à 9 par mois. Le comptage s’effectue tôt le matin, à partir de 6 h.

2.3.4. – Cas du Héron garde bœufs *Bubulcus ibis*

Les travaux effectués sur le héron garde-bœufs ne rencontrent aucune difficulté, puisque l’espèce se trouve un peu partout dans la plaine. Nous nous sommes intéressés à suivre les variations des effectifs des populations de cet Ardéidé et ses fréquentations dans les différents milieux.

2.3.4.1. – Méthode d’étude des variations des effectifs de *Bubulcus ibis* dans la Mitidja

2.3.4.2. – Méthode d’étude des milieux fréquentés par *Bubulcus ibis* dans la Mitidja

Le but du travail est de chercher à préciser les différents types de milieux où l’espèce se rend après son départ depuis les dortoirs. Dans la région d’étude, cinq types de milieux sont pris en considération. Ce sont les terres ouvertes labourables, les terres semi-ouvertes portant des arbustes (vergers, maquis), les lieux de perçage, les marécages et les dépotoirs sauvages et les décharges publiques. En effet, des estimations des effectifs de *B. ibis* sont faites en fonction du type de milieu depuis janvier jusqu’en décembre 2006.
2.4. – Méthode d’étude de l’écologie trophique de quelques espèces d’oiseaux utiles

2.4.1. – Cas de la Pie grièche méridionale Lanius meridionalis

L’espèce L. meridionalis est bien représentée en Mitidja. Nous nous sommes intéressés à son comportement trophique et à sa biologie de reproduction dans deux stations de la partie orientale de la Mitidja. Il s’agit de Cherbara (Ramadhnia) et de Baraki (ferme El Aiachi) distantes l’une de l’autre de près de 12 km. à vol d’oiseau.

2.4.1.1. Méthode d’étude du comportement trophique de L. meridionalis

L’étude du comportement de ce prédateur est basée sur l’analyse des pelotes de rejetion et sur la recherche des proies retrouvées au niveau des lardoirs.

2.4.1.1.1.- Collecte et analyse des pelotes de rejetion

Repérer la Pie grièche sur le terrain est assez aisé, compte-tenu de ses cris bruyants. En revanche la difficulté réside en la recherche de ses régurgitats. La répétition des sorties et l’expérience du terrain permettent d’identifier les lieux où l’oiseau rejette ses pelotes. Ramadhnia, où les premiers indices de présence des pelotes ont été découverts, se caractérise par une petite surface de près de 2 ha entourée par du grillage qui semble jouer le rôle de limites territoriales pour ce Laniidae. Cette station se situe au milieu de parcelles de cultures maraîchères et à proximité d’un verger de citronniers et du village de Ramadhnia. Ainsi la collecte des régurgitats est réalisée régulièrement depuis janvier jusqu’en décembre 2006. Dans ce but, deux sorties sur le terrain sont réalisées, les 15 et 30 de chaque mois. Quant à la station de Baraki, sise dans la ferme d’El Aiachi, elle est formée de parcelles d’orge, bordées de lignes d’oliviers. Au dessus de la station, Lanius meridionalis est observée souvent en train de percher sur les câbles des poteaux électriques. Les pelotes sont ramassées entre mai et décembre 2006 au dessous d’un olivier où l’oiseau venait d’installer son nid. Pour ce faire, des sorties sont entreprises également tous les 15 jours en plus de passages supplémentaires réservés pour les observations sur le comportement de l’espèce. Après la collecte des pelotes de rejetion,
celles-ci sont acheminées jusqu’au laboratoire où elles sont analysées par la méthode humide alcoolique afin d’identifier les différentes espèces- proies à l’aide de clefs de détermination.

2.4.1.1.2. – Recherches des proies au niveau des lardoires

2.4.1.2. - Biologie de la reproduction de *Lanius meridionalis*

2.4.2. – Cas de l’Elanion blac *Elanus caeruleus*

L’Elanion blac est une espèce particulière, qui diffère des autres rapaces diurnes par son éthologie. Dans ce paragraphe, il est traité de sa distribution dans la plaine de la Mitidja et de son comportement général et trophique en particulier dans une station située près de Meftah.

2.4.2.1. – Etude de la distribution et comportement d’*Elanus caeruleus* enMitidja

Au cours du recensement des oiseaux dans la plaine de la Mitidja entre 2004 et 2006, une attention particulière est réservée pour l’Elanion blac. Il est à rappeler que 2 à 4 sorties régulières sont effectuées par mois au cours desquelles la moindre information concernant *Elanus caeruleus* est notée. Ce rapace est suivi depuis la première mention de sa présence en tenant compte de la désignation exacte du lieu, de la date, du moment de la journée, du support végétal s’il est perché et d’autres détails portant sur son comportement général.
2.4.2.2. – Méthode d’étude du comportement trophique d’*Elanus caeruleus*

Dans le cadre d’un travail d’équipe sur les rapaces nocturnes et diurnes, la recherche des pelotes de rejet est systématique dans toute la plaine de la Mitidja. C’est lors d’un passage de routine en véhicule dans la région de Meflah que la présence de l’Elanion blac est mentionnée dans un premier temps. En fait, par la suite l’espèce a été observée à plusieurs reprises dans la même zone. À pied des recherches sont faites pour repérer les perchoirs les plus fréquemment utilisés par *Elanus caeruleus*. Les sites où l’oiseau rejette ses régurgitats ont été découverts finalement. C’est toujours à Meflah, plus précisément à Haouch Makhfi, sous deux types d’arbres, soit *Olea europaea* et *Fraxinus excelsior* que la collecte des pelotes est faite lors de trois sorties la première en août et les suivantes en septembre et en octobre. A chaque fois 20 à 40 pelotes sont récupérées. Les régurgitats sont placés isolément dans des cornets en papier portant les mentions du nom du lieu et de la date de l’échantillonnage. Les pelotes sont ainsi conservées et acheminées jusqu’au laboratoire. Sachant que tous les régurgitats ne vont pas être décortiqués dans l’immédiat, chaque lot est traité à l’aide d’un produit pesticide pour éviter les attaques de différents insectes nécrophages ou détritivores tels que les lépisomes, les anthères et les psaques lors de leur stockage. Une à une les pelotes sont analysées par la méthode aqueuse afin de faciliter l’identification des espèces-proies consommés par *Elanus caeruleus*.

2.5. – Paramètres utilisés dans l’exploitation des données

Les résultats obtenus dans le cadre du présent travail sont traités d’abord par les indices de composition, puis par des indices écologiques de structure et enfin par des méthodes statistiques.

2.5.1. – Utilisation des indices écologiques de composition pour l’exploitation des données

Dans cette partie, des indices écologiques de composition sont employés tels que les richesses totale et moyenne, les fréquences centésimales, la densité et les coefficients d’homogénéité et de similarité.

2.5.1.1. – Richesse totale (S)

La richesse totale S d’un peuplement, c est le nombre total des espèces de ce peuplement au niveau d’un écosystème donné (RAMADE, 1984). Pour BLONDEL (1975) S est le nombre total des espèces contactées au moins une fois au terme des N relevés.
Dans le présent travail il s’agit de déterminer le nombre des espèces d’oiseaux vivant dans la plaine de Mitidja et d’autre part le nombre d’espèces végétales ou animales ingérés par certaines espèces aviaires.

2.5.1.2. – Richesse moyenne (s)

La richesse moyenne d’un peuplement Sm est le nombre moyen des espèces observées dans un ensemble de n stations (MULLER, 1985). C’est un paramètre qui tend à se préciser avec l’effort d’échantillonnage et qui permet une comparaison statistique entre les différents milieux (BLONDEL et CHOISY, 1983). Ce dernier permet de calculer l’homogénéité du peuplement. BLONDEL (1979) donne la formule suivante :

\[Sm = \frac{Si}{N} \]

où Si est la somme des espèces notées à chacun des relevés 1, 2, 3, ……N.

De même cet indice écologique est utilisé pour reconnaître le nombre moyen des espèces aviaires fréquentant la Mitidja ainsi que le nombre moyen des espèces végétales ou animales consommées par certaines espèces d’oiseaux.

2.5.1.3. - Fréquences centésimales ou abondances relatives

La fréquence centésimale F est le pourcentage des individus d’une espèce i par rapport à l’ensemble des individus N toutes espèces confondues (DAJOZ, 1971). Dans le cas présent F est utilisé pour l’étude de l’avifaune dans la plaine de la Mitidja en général et les espèces introduites ou en pleine extension, ainsi que pour les espèces-proies ingurgitées par Lanius meridionalis et par Elanus caeruleus.

2.5.1.4. – Notion de densité

La densité di de l’espèce i est le nombre de couples nicheurs sur 10 hectares, obtenus par la méthode du quadrat

2.5.1.4.1. – Densité totale

La densité totale d’un peuplement, obtenue par la méthode du quadrat, est la somme des densités spécifiques di

2.5.1.4.2. – Densité spécifique moyenne

La densité spécifique moyenne d’un peuplement d est le rapport de la densité totale D à la richesse totale S (MULLER, 1985). Dans le cas présent d correspond à la densité des espèces de Columbidae, ainsi que celle de la Pie-grièche méridionale.

2.5.1.5 – Coefficient d’homogénéité

Cet indice permet de mesurer dans sa globalité le degré d’homogénéité d’un peuplement.
Il est calculé grâce au rapport \(T = \frac{(100 \times s)}{S} \) / S, c’est-à-dire à partir de l’écart de la richesse moyenne à la richesse totale. Plus cet écart est important, plus le nombre des espèces rares est élevé et plus le peuplement est hétérogène (BLONDEL et al., 1981). En effet dans une comparaison de peuplements le rapport \(T \) est d’autant plus grand que l’homogénéité est importante. Dans le présent travail, \(T \) correspond au taux d’homogénéité du peuplement avien de la Mitidja.

2.5.1.6. – Coefficient de similarité

Afin de juger de la similitude de deux biotopes, il est possible d’utiliser le quotient de similarité de SOERENSEN (1948) cité par BACHELIER (1978):

\[
Q_s = \frac{2c}{a + b} \times 100
\]

\(a \) et \(b \) sont les nombres d’espèces présentes dans les milieux respectivement \(a \) et \(b \), et \(c \) est le nombre d’espèces communes aux deux milieux. En effet, le quotient \(Q_s \) varie entre 0 et 100. S’il est nul, la similarité est absente entre les deux milieux. S’il est égal à 100, les milieux sont identiques (BACHELIER, 1978). Dans le cas présent, cet indice est appliqué entre trois stations, soit une seule pour chacune des trois parties de la Mitidja, soit Rouiba pour la partie orientale, Boufarik pour la partie médiane et Bourkika pour la partie occidentale.

2.5.2. – Utilisation des indices écologiques de structure

Pour l’exploitation des résultats parmi les indices écologiques de structure employés, il y a les indices de diversité de Shannon-Weaver et de l’équirépartition.

2.5.2.1. – Indice de diversité de Shannon-Weaver (\(H' \))

La diversité \(H \) mesure le niveau de complexité d’un peuplement; plus il y a d’espèces et plus les abondances respectives sont voisines, plus elle est élevée (BLONDEL et al., 1973). Il est considéré comme le meilleur moyen pour traduire la diversité.

L’indice de diversité de Shannon-Weaver \(H' \) varie directement en fonction du nombre des espèces. Il convient à l’étude comparative du peuplement du fait qu’il est relativement indépendant de la taille de l’échantillon (BARBAULT, 1983). Il est calculé à partir de la formule \(H' = -\sum q_i \log_2 q_i \), dont \(q_i = \frac{n_i}{N} \) dans laquelle \(q_i \) représente la probabilité de rencontrer l’espèce \(i \); \(n_i \) est le nombre des individus de l’espèce \(i \) et \(N \) le nombre total des individus toutes espèces confondues Une communauté est d’autant plus diversifiée que la
valeur de H’ sera plus grande. Dans le cas présent H’ est appliqué à l’étude de la diversité du peuplement avien dans la plaine de Mitidja, ainsi qu’à la diversité des espèces végétales consommées par Psittacula krameri et les espèces proies trouvées dans les régurgitats de Lanius meridionalis et de Elanus caeruleus.

2.5.2.2. – Indice d’Equirépartition (E)

E est le rapport de la diversité observée H’ à la diversité maximale H’ max. (BLONDEL, 1979). Cependant H’ max. est égale à \(\log_2 S \) dont S est la richesse totale des espèces présentes. En effet, les valeurs de l’équirépartition se retrouvent dans un intervalle compris entre 0 et 1. Elles tendent vers 0 quand la quasi-totalité des effectifs correspondent à une seule espèce du peuplement. Elle tendent vers 1 lorsque chacune des espèces est représentée par le même nombre d’individus (RAMADE, 1984). Dans le cas présent E est appliqué aux effectifs des espèces avienues de la Mitidja, ainsi que le nombre des espèces-proies trouvés dans les menus de la Pie-grièche méridionale et l’Elanion blac.

2.5.3 – Indice de fragmentation

L’indice de fragmentation utilisé jusque-là pour caractériser les pourcentages des ossements fracturés dans les pelotes d’oiseaux prédateurs ou dans les excréments de divers animaux carnivores est appliqué pour les éléments sclérotonisés d’Arthropodes notés dans les pelotes de la Pie-grièche méridionale. D’après DODSON et WEXLAR (1979) cités par BRUDERER (1996), la formule est la suivante :

\[
\frac{\text{N.E.B.}}{\text{P.F.} \%} = \frac{1}{\text{N.E.I. + N.E.B.}}
\]

P.F. % est le pourcentage des éléments fragmentés ;
N.E.B. est le nombre des éléments brisés ;
N.E.I. est le nombre des éléments intacts.

2.5.4 – Biomasse relative

La biomasse relative ou le pourcentage en poids (B %) est le rapport entre le nombre des individus d’une espèce-proie déterminée P1 et le poids total des diverses proies P (VIVIEN, 1973). Elle est appliquée aux espèces-proies trouvées dans les régurgitats de l’élanion blac.
\[P_i \]

\[B \ (\%) = \frac{P_i}{P} \times 100 \]

- \(B \) : Biomasse relative
- \(P_i \) : Poids total des individus de l'espèce \(i \)
- \(P \) : Poids total des diverses proies présentes.

2.5.5. – Utilisation des méthodes statistiques pour l’analyse des données

Les méthodes d’analyse statistique sont représentées par les régressions et corrélations, l’analyse factorielle des correspondances et l’analyse de la variance.

2.5.5.1. – Régressions et corrélations

L’analyse des régressions reste l’un des outils les plus couramment utilisés dans plusieurs domaines. L’objectif est de choisir un modèle afin d’établir une relation fonctionnelle conduisant à tirer d’éventuelles corrélations. Dans le présent travail, l’analyse a concerné la relation entre le nombre des individus vus par jour et par heure et la valeur maximale des contacts avec \(Psittacula krameri \), ainsi que la relation entre le nombre de proies, et la taille maximale de la proie ingérée par la Pie-grièche méridionale, pelote par pelote.

L’analyse des régressions et des corrélations a permis de déduire des équations qui décrivent le mieux la nature fonctionnelle de la relation entre deux variables. Il est noter que le coefficient de détermination \(R^2 \) calculé, représentant la mesure de la proportion de la variable explicative par la variable à expliquer, évaluer le degré d’association entre les deux variables et permet de juger de la qualité de l’ajustement des points par la droite de régression. En plus des \(R^2 \), les probabilités sont calculées pour chaque cas pour tirer les degrés de significations (DAGNELIE, 1975).

2.5.5.2. – Analyse factorielle des correspondances

L’analyse factorielle des correspondances est essentiellement un mode de représentation graphique de tableaux de contingence. Elle permet de ressembler dans trois dimensions la plus grande partie possible contenue dans un tableau des éléments étudiés (DELAGARDE, 1983). Elle a pour but de décrire sous forme graphique le

2.5.5.3. – Analyse de la variance (ANOVA)

La variance à un critère de classification, ou à un facteur, a pour but de comparer les moyennes de plusieurs populations supposées normales et de même variance, à partir d’échantillons aléatoires, simple et indépendants les uns des autres (DAGNELIE, 1975). Cet auteur ajoute que la variance d’une série statistique ou d’une distribution de fréquences est la moyenne arithmétique des carrés des écarts par rapport à la moyenne. Elle permet de confirmer s’il existe une différence significative entre deux séries de données. En effet, cette analyse est appliquée pour vérifier s’il existe une différence significative entre les principales espèces-proies trouvées dans les régurgitats de Lanius meridionalis recueillies à Ramadhnia et à Baraki.
Etude de l’Avifaune de la Mitidja
Chapitre III – Résultats sur l’avifaune de la Mitidja

Le présent chapitre commence par une présentation du peuplement avien de la Mitidja, et se poursuit par l’examen des espèces introduites ou en phase d’expansion. La dernière partie est consacrée à l’écologie trophique et à la reproduction de deux espèces d’oiseaux peu connues dans la région d’étude. Ce sont la Pie-grièche méridionale et l’Elanion blac.

3.1. - Etude du peuplement avien de la Mitidja

Nous présentons ici l’analyse du peuplement d’oiseaux recensés dans la région d’étude selon leurs origines biogéographiques et leurs statuts phénologiques. Les données ont été collectées par le moyen d’échantillonnages fréquentiels progressifs (E.F.P) et traitées en se servant de paramètres écologiques comme les richesses totales et moyennes, le coefficient d’homogénéité, les indices de Shannon Weaver et l’équirépartition. Les fréquences des principales espèces observées sont ensuite commentées. Une étude comparative entre trois stations représentatives de la Mitidja est effectuée ensuite à l’aide du coefficient de similarité, et enfin la structure du peuplement
avien de cette région est déterminée à l'aide de l'analyse factorielle des correspondances.

3.1.1. – Analyse biogéographique du peuplement avien

Le peuplement avien de la région d'étude est composé de 125 espèces qui se distribuent entre 12 types fauniques selon la classification de VOOUS (1960) et de BLONDEL et al. (1978). Les résultats sont consignés dans le tableau 9.

<table>
<thead>
<tr>
<th>Types fauniques</th>
<th>M</th>
<th>TM</th>
<th>PX</th>
<th>PXM</th>
<th>H</th>
<th>Ed</th>
<th>M</th>
<th>AM</th>
<th>C</th>
<th>P</th>
<th>FM</th>
<th>E</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre d'espèce</td>
<td>13</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>32</td>
<td>0</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Catégorie faunique</td>
<td>Méditerranéen</td>
<td>Holartique</td>
<td>Boréale</td>
<td>E</td>
<td>ET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaux</td>
<td>36</td>
<td>26</td>
<td>22</td>
<td>32</td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportions en %</td>
<td>25,8</td>
<td>18,2</td>
<td>25,6</td>
<td>13,6</td>
<td>13,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 9 – Composition biogéographique de l’avifaune de la Mitidja

L’analyse des résultats montre que le quart de l’avifaune de la Mitidja, soit la majorité appartient au type faunique Paléartique (Tab. 9; Fig. 14). Ensuite viennent les types fauniques Européen et Européo-Turkestanien avec entre 10 et 15 % des espèces, puis les types Méditerranéen et Holarticque qui ne comptent qu’un peu plus de 10 % des espèces chacun (Tab. 9 ; Fig. 14). Les autres types fauniques ne comportent chacun qu’un nombre d’espèces faible, compris entre 2 et 9.

Si l’on considère maintenant les catégories fauniques, on en voit apparaître cinq, la méditerranéenne se plaçant en tête avec 28,8 % des espèces (Tab. 9). Les catégories paléartique et paléo-montagnarde ou boréale viennent au second rang avec le quart des espèces chacune. Par ailleurs la catégorie holartique comprend un cinquième des espèces. Les autres catégories ne sont représentées que par de faibles effectifs compris entre 12 et 14 % (Tab. 9; Fig. 15).

3.1.2. – Statuts phénologiques et origines biogéographiques des espèces avivennes de la Mitidja

Sur 125 espèces d’oiseaux inventoriées (Tab.10), 60 espèces (48 %) sont
sédentaires. Les migrateurs estivants sont plus faiblement représentés avec 25 espèces (20 %). Il en est de même des migrateurs hivernants (17 espèces, 13,6 %) et pour les visiteurs de passage (15 espèces, 12 %). Enfin les 8 dernières espèces sont migratrices partielles (6,4 %) (Tab. 10 ; Fig. 16).

Fig. 14 – Types fauniques du peuplement avien de la Mitidja

M : Méditerranéen
TM : Turkestano-Méditerranéen
PX : Paléoxérique
PXM : Paléo-xéro-montagnard
IA : Indo-Africain
Eth : Ethiopien
AM : Ancien Monde
C : cosmopolite
PM : Paléo-montagnarde
P : Paléarctique
ET : Européo-Turkestaniens
E : Européen
Fig. 15 – Répartition des espèces aviaires de la Mitidja en fonction des catégories fauniques

Fig. 16 – Statut phénologique des espèces aviaires de la Mitidja

S : Sédentaire, Mh : Migrateur hivernant
Me : Migrateur estivant Mp : Migrateur partiel
VP : Visiteur de passage
<table>
<thead>
<tr>
<th>Noms scientifiques</th>
<th>Noms vernaculaires</th>
<th>Phénologie</th>
<th>Biogéographie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardeidae Bubulus ibis (Linné, 1758) Nycticorax nycticorax (Linné, 1758)</td>
<td>Héron garde-bœuf Héron bihoreau</td>
<td>Mp Mp</td>
<td>IA C</td>
</tr>
<tr>
<td>Ciconiidae Ciconia ciconia (Linné, 1758) Ciconia nigra (Linné, 1758)</td>
<td>Cigogne blanche Cigogne noire</td>
<td>Mp Vp</td>
<td>P P</td>
</tr>
<tr>
<td>Anatidae Anas platyrhynchos Linné, 1758</td>
<td>Canard colvert</td>
<td>Mh</td>
<td>H</td>
</tr>
<tr>
<td>Phoenicopteridae Phoenicopterus ruber-roseus Linné, 1758 Aythya fuligula (Linné, 1758)</td>
<td>Flamant rose Fuligule morillon</td>
<td>Mh Mh</td>
<td>AM P</td>
</tr>
<tr>
<td>Falconidae Falco tinnunculus Linné, 1758 Falco naumanni Fleischer, 1817 Falco peregrinus Gmelin, 1788</td>
<td>Faucon crécerelle Faucon crécellette Faucon pèlerin</td>
<td>Mp VP S</td>
<td>AM TM C</td>
</tr>
<tr>
<td>Phasianidae Coturnix coturnix (Linné, 1758) Alectoris barbara (Bonnaterre, 1829)</td>
<td>Caille des blés Perdrix gamba</td>
<td>S S</td>
<td>AM M</td>
</tr>
<tr>
<td>Rallidae Gallinula chloropus (Linné, 1758) Fulica atra Linné, 1758</td>
<td>Gallinule poule-d’eau Foulque macroule</td>
<td>S Mp</td>
<td>C P</td>
</tr>
<tr>
<td>Scolopacidae Scolopax rusticola Linné, 1758</td>
<td>Bécasse des bois</td>
<td>Mh</td>
<td>P</td>
</tr>
<tr>
<td>Laridae Larus ridibundus Linné, 1766 Larus fuscus Linné, 1758 Larus michahelis Naumann, 1840 Larus audouinii Payraudeau, 1826</td>
<td>Mouette rieuse Goéland brun Goéland leucophée Goéland d’Audouin</td>
<td>Mh Mh S MhP P M M</td>
<td></td>
</tr>
<tr>
<td>Pteroclididae Pterocles orientalis (Linné, 1758)</td>
<td>Ganga unibandé</td>
<td>S</td>
<td>PX</td>
</tr>
<tr>
<td>Columbidae Columba livia Bonnaterre, 1790 Columba palumbus Linné, 1758 Columba oenas Linné, 1758 Streptopelia turtur (Linné, 1758) S. senegalensis (Linné, 1766) S. decaocto (Frivalsky, 1838) S. roseo-grisea (Sundevall, 1857)</td>
<td>Pigeon biset Pigeon ramier Pigeon colombin Tourterelle des bois Tourterelle maillée Tourterelle turquoise Tourterelle rieuse</td>
<td>S S Mh Me S IM1 ET ET Eth IA IA</td>
<td></td>
</tr>
<tr>
<td>Cuculidae Cuculus canorus Linné, 1758</td>
<td>Coucou gris</td>
<td>Me</td>
<td>P</td>
</tr>
<tr>
<td>Psittacidae Psittacula krameri Scopoli, 1769</td>
<td>Perruche à collier</td>
<td>S</td>
<td>Eth</td>
</tr>
</tbody>
</table>

63
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Common Name</th>
<th>S S S Me</th>
<th>TM P H AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strigidae</td>
<td>Athene noctua Scopoli, 1769</td>
<td>Chouette chevèche</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strix aluco Linné, 1758</td>
<td>Chouette hulotte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asio otus Linné, 1758</td>
<td>Hibou moyen-duc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otus scops Linné, 1758</td>
<td>Hibou petit duc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tytonidae</td>
<td>Tyto alba Scopoli, 1759</td>
<td>Chouette effraie</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>Apodidae</td>
<td>Apus apus (Linné, 1788)</td>
<td>Martinet noir</td>
<td>Me</td>
<td>Me</td>
</tr>
<tr>
<td></td>
<td>Apus pallidus (Shelley, 1870)</td>
<td>Martinet pâle</td>
<td></td>
<td>P M</td>
</tr>
<tr>
<td>Coraciidae</td>
<td>Coracias garrulus Linné, 1758</td>
<td>Rollier d’Europe</td>
<td>Me</td>
<td>ET</td>
</tr>
<tr>
<td>Meropidae</td>
<td>Merops apiaster Linné, 1758</td>
<td>Guépier d’Europe</td>
<td>Me</td>
<td>TM</td>
</tr>
<tr>
<td>Upupidae</td>
<td>Upupa epops Linné, 1758</td>
<td>Huppe fasciée</td>
<td>Me</td>
<td>AM</td>
</tr>
<tr>
<td>Picidae</td>
<td>Dendrocopos minor (Linné, 1758)</td>
<td>Pic épeichette</td>
<td>S S</td>
<td>P P E</td>
</tr>
<tr>
<td></td>
<td>Jynx torquilla mauritanicaRothsch., 1909</td>
<td>Torcol Pic de Levallant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picus vaillantii (Malherbe, 1846)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaudidae</td>
<td>Galerida cristata (Linné, 1758)</td>
<td>Cochevis huppé</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alauda arvensis Linné, 1758</td>
<td>Alouette des champs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galeria theklae (Scopoli, 1786)</td>
<td>Alouette Thékla</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lullula arborea (Linné, 1758)</td>
<td>Iulu Alouette</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melanocorypha calandra (Linné, 1766)</td>
<td>Calandre Alouette</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calandrella rufescens Vieillot, 1820 C.</td>
<td>Calandre Alouette</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>brachydactyla (Gmelin, 1789)</td>
<td>calandrelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirundinidae</td>
<td>Delichon urbica (Linné, 1758)</td>
<td>Hirondelle de fenêtre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hirundo rustica (Linné, 1758)</td>
<td>Hirondelle rustique</td>
<td>Me</td>
<td>VP</td>
</tr>
<tr>
<td></td>
<td>Riparia riparia (Linné, 1758)</td>
<td>Hirondelle de rivage</td>
<td></td>
<td>P H H</td>
</tr>
<tr>
<td>Motacillidae</td>
<td>Motacilla alba Linné, 1758</td>
<td>Bergeronnette grise B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motacilla flava Linné, 1758</td>
<td>des ruisseaux B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthus trivialis Linné, 1758</td>
<td>printanière Pipit des arbres Pipit farlouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthus pratensis (Linné, 1758)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troglytidae</td>
<td>Troglydtes troglodytes (Linné, 1758)</td>
<td>Troglydte mignon</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>Pycnonotidae</td>
<td>Pycnonotus barbatusDesfontaines, 1758</td>
<td>Bulbul des jardins</td>
<td>S</td>
<td>Eth</td>
</tr>
<tr>
<td>Turdidae</td>
<td>Saxicola torquata (Linné, 1766)</td>
<td>Traquet pâte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saxicola rubetra (Linné, 1758)</td>
<td>Traquet tarier</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oenanthe oenanthe (Linné, 1758)</td>
<td>Traquet motteux</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phoenicurus ochrurus (Gmelin, 1774)</td>
<td>Rougequeue noir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph. phoenicurus (Linné, 1758)</td>
<td>Rougequeue à front blanc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph. moussieri Olpe-Galliard, 1852 Erithacus</td>
<td>Rubiette de Moussier</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rubecula witherbyi Hartert, 1910 Luscinia</td>
<td>Rougeorge Gorgebleue à miroir Rossignol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>svesica (Linné, 1758)</td>
<td>philomèle Grive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. megarhynchos Brehm, 1831 Turdus philomelos</td>
<td>musicienne Grive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linné, 1758 T. viscivorus Linné, 1758 T.</td>
<td>Grive draine Merle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>merula algira Madarasz, 1903 Monticola solitari</td>
<td>draine Merle noir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Linné, 1758)</td>
<td>Merle bleu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
<td>Meaning</td>
<td>Code 1</td>
<td>Code 2</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Sylviidae</td>
<td>Acrocephalus shoenobaenus (Linné, 1758) A. scirpaceus (Hermann, 1804)</td>
<td>Phragmite des joncs Rousserolle effarvatte Cisticole des joncs Hypolais pâle Fauvette grisette Fauvette des jardins Fauvette à tête noire Fauvette mélanocephale Fauvette passerinette Fauvette à lunettes Bouscarle de Cetti Locustelle Iuscinoideis Roitelet triple-bandeau Pouillot veloce Pouillot fitis Pouillot de Bonelli</td>
<td>Me Me S</td>
<td>Me Me VP</td>
</tr>
<tr>
<td></td>
<td>Cisticola juncidis (Rafinesque, 1810) Hippolais pallida (He. et E., 1833) Sylvia communis Lathan, 1787 Sylvia borin (Boddart, 1783) Sylvia atricapilla (Linné, 1758) Sylvia melanocephala (Gmelin, 1788) Sylvia cantillans (Pallas, 1764) Sylvia conspicillata Temminck, 1820 Cettia cetti (Temminck, 1820) Locustella Iuscinoidea (Savi, 1824) Regulus ignicapilla (Temminck, 1820) Phylloscopus collybita (Vieillot, 1817) Phylloscopus trochilus (Linné, 1758) Phylloscopus bonelli (Vieillot, 1819)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscicapidae</td>
<td>Muscicapa striata (Pallas, 1764) Ficedula hypoleuca (Pallas, 1764) Ficedula albicoloss Temm., 1815</td>
<td>Gobe mouche gris Gobe mouche noir Gobe mouche à collier</td>
<td>Me VP</td>
<td>VP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ET E</td>
<td></td>
</tr>
<tr>
<td>Paridae</td>
<td>Parus major Linné, 1758 Parus caeruleus Linné, 1758</td>
<td>Mésange charbonnière Mésange bleue</td>
<td>S S</td>
<td>P E</td>
</tr>
<tr>
<td>Certhiidae</td>
<td>Certhia brachydactyla (Witherby, 1905)</td>
<td>Grimpereau des jardins</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>Orielidae</td>
<td>Oriolus oriolus Linné, 1758</td>
<td>Loriot d'Europe</td>
<td>Me</td>
<td>AM</td>
</tr>
<tr>
<td>Laniidae</td>
<td>Tchagra senegala (Linné, 1766) Lanius meridionalis (Linné, 1758) Lanius senator Linné, 1758</td>
<td>Tchagra à tête noire Pie-grièche méridionale Pie-grièche à tête rousse</td>
<td>S S Me</td>
<td>Eth H M</td>
</tr>
<tr>
<td>Corvidae</td>
<td>Corvus corax tingitanus Irby, 1874 Corvus monedula Linné, 1758</td>
<td>Grand corbeau Choucas des tours</td>
<td>S S</td>
<td>H P</td>
</tr>
<tr>
<td>Emberizidae</td>
<td>Miliaria calandra Linné, 1758 Emberiza cirlus Linné, 1766</td>
<td>Bruant proyer Bruant zizi</td>
<td>S S</td>
<td>ET M</td>
</tr>
<tr>
<td>Passeridae</td>
<td>Passer domesticus (Linné, 1758) Passer hispaniolensis Temminck, 1820 P. domesticus. x P. hispaniolens P. montanus (Linné, 1758)</td>
<td>Moineau domestique Moineau espagnol Moineau hybride Moineau friquet</td>
<td>S Me S Vp</td>
<td>P TM P P</td>
</tr>
<tr>
<td>Sturnidae</td>
<td>Sturnus vulgaris Linné,</td>
<td>Étourneau</td>
<td>Mh S</td>
<td>ET M</td>
</tr>
</tbody>
</table>

65
Abréviations :

AM	Ancien Monde H	
Holarctique P	Paléarctique E	
Européen M	Méditerranéen PXM	
Paléo-xéro-montagnard	PX	Paléoxérique TM
Turkestanien-Méditerranéen ET	ET	Européo-Turkestanien Eth
Ethiopien IA	Indo-Africain	
C	cosmopolite	
S	Sédentaire, Mh	
Migrateur hivernant Me		
Migrateur estivant Mp		
Migrateur partiel VP	Visiteur de passage	

3.1.3. – Exploitation écologique des résultats obtenus sur le peuplement avien

Dans cette partie, nous commençons par exposer les résultats que nous avons obtenus grâce aux échantillonnages fréquentiels progressifs (E.F.P.), ce qui nous permet de donner un diagnostic écologique du peuplement avien en fonction des stations.

3.1.3.1. – Analyse des données des relevés des échantillonnages fréquentiels progressifs par station

Parmi toutes les espèces avies observées, nous n’en avons retenu que 81, qui, du fait qu’elle défendent de petits cantons, se prêtent bien au méthodes que nous avons employées pour exploiter les données. On trouvera dans le tableau 11 les valeurs moyennes des contacts obtenus avec les oiseaux étudiés.

Les valeurs moyennes des contacts en fonction des échantillonnages fréquentiels progressifs par espèce et par station se situent entre 0,03 (Bourkika) et 17,1 (Rouiba) (Tab. 11). D’une manière générale, les moyennes des contacts sont relativement faibles. Celles qui sont inférieures ou égales à 1 (x ≤ 1) par espèce et par station correspondent, par ordre croissant, aux taux suivants : 69,2 % (Oued Smar), 76,2 % (Meftaf), 78,6 % (Boufarik), 80 % (Réghaïa, Rouiba, Ain Naadjia), 80,6 % (Bourkika), 82,4 % (Birtouta), 87,8 % (Bilda), 88 % (Eucalyptus), 88,2 % (Baraki) et 88,9 % (Chebli). Ces valeurs moyennes de contacts (x ≤ 1) sont généralement celles de passereaux insectivores ou polyphages qui vivent en solitaire ou en petits groupes (Muscicapa striata, Cisticola juncidis, Saxicola torquata, Sylvia atricapilla, Parus caeruleus, Upupa epops, Lullula arborea et Lanius meridionalis). Les contacts de valeur moyenne comprise entre 1 et 2 (1 < x ≤ 2) ont été recueillis sur 12 stations et correspondent à des valeurs allant de 4,4 % (Meftaf) à 21,4 % (Oued Smar). Parmi les espèces dont la valeur de x varie entre 1 et 2, nous trouvons le Pouillot véloce et le verdier d’Europe. Par ailleurs les valeurs supérieures ou égales à 2 (x ≥ 2) correspondent à des espèces frugivores comme Turdus merula et Pycnonotus barbatus. Il est à remarquer que ce sont les espèces granivores qui vivent en colonies qui montrent des moyennes de contacts les plus élevées, 5,8 pour Serinus
serinus, 6,8 pour *Passer domesticus* x *P. hispaniolensis* et 17,1 pour *Columba livia*.
<table>
<thead>
<tr>
<th>Rég</th>
<th>Rouiba</th>
<th>Mefta</th>
<th>Cherar</th>
<th>O. smar</th>
<th>Baraki</th>
<th>Ain N.</th>
<th>Chebli</th>
<th>Birtou</th>
<th>Boufar</th>
<th>Baida</th>
<th>Bou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coturnix coturnix</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0,06</td>
</tr>
<tr>
<td>Alectoris barbara</td>
<td>0,33</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0,38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,06</td>
<td>0,17</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scolopax rusticola</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pterocles orientalis</td>
<td>0</td>
<td>0,1</td>
</tr>
<tr>
<td>Columba livia</td>
<td>6,11</td>
<td>17,06</td>
<td>0</td>
<td>6,14</td>
<td>1,86</td>
<td>1,38</td>
<td>0,57</td>
<td>0</td>
<td>1,67</td>
<td>7,33</td>
<td>0,43</td>
</tr>
<tr>
<td>C. palumbus</td>
<td>0</td>
<td>0,69</td>
<td>1,36</td>
<td>0,71</td>
<td>1,57</td>
<td>4,08</td>
<td>2,14</td>
<td>0,17</td>
<td>0,33</td>
<td>0,29</td>
<td>0,14</td>
</tr>
<tr>
<td>C. oenas</td>
<td>1,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,6</td>
</tr>
<tr>
<td>Streptopelia turtur</td>
<td>0,67</td>
<td>0</td>
<td>2,45</td>
<td>0,29</td>
<td>0,67</td>
<td>12</td>
<td>0,43</td>
<td>0</td>
<td>0,86</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>S. senegalensis</td>
<td>0,44</td>
<td>0,06</td>
<td>0,5</td>
<td>0,29</td>
<td>0,29</td>
<td>0,29</td>
<td>0,08</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
<td>0,04</td>
</tr>
<tr>
<td>S. decaocto</td>
<td>0,56</td>
<td>0,63</td>
<td>0,5</td>
<td>0,79</td>
<td>2,14</td>
<td>0</td>
<td>0,57</td>
<td>0,17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cuculus canorus</td>
<td>0</td>
</tr>
<tr>
<td>Psittacula krameri</td>
<td>0,55</td>
<td>0,31</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>1,43</td>
<td>2,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coracias garrulus</td>
<td>0</td>
<td>0</td>
<td>0,18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merops apiaster</td>
<td>4,17</td>
<td>0</td>
<td>3,73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Upupa epops</td>
<td>0</td>
<td>0</td>
<td>0,18</td>
<td>0,14</td>
<td>0,33</td>
<td>0</td>
<td>0,43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
</tr>
<tr>
<td>Dendrocoptes minor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,04</td>
<td>0</td>
</tr>
<tr>
<td>Jynx torquilla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>Galerida cristata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0,54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,24</td>
<td>0,2</td>
</tr>
<tr>
<td>Alauda arvensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>1,2</td>
</tr>
<tr>
<td>Galerida theklae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
</tr>
<tr>
<td>Lullula arborea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,08</td>
<td>0,1</td>
</tr>
<tr>
<td>Melanocorypha cala.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,03</td>
</tr>
<tr>
<td>Calandrella rufescen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0,07</td>
</tr>
<tr>
<td>C. brachydactyla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,43</td>
<td>0</td>
<td>0,15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Motacilla alba</td>
<td>0,67</td>
<td>1,19</td>
<td>5,67</td>
<td>2</td>
<td>1,25</td>
<td>0,23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,33</td>
<td>0</td>
</tr>
<tr>
<td>M. caspica</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. flava</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthus trivialis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,11</td>
<td>0</td>
</tr>
<tr>
<td>A. pratensis</td>
<td>0</td>
<td>0,38</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthus sp</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
</tr>
<tr>
<td>Troglodytes troglody</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0,5</td>
<td>0,1</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Pycnocerus barbatus</td>
<td>0,67</td>
<td>0,44</td>
<td>0,07</td>
<td>0,29</td>
<td>1,29</td>
<td>0</td>
<td>0,57</td>
<td>0</td>
<td>1</td>
<td>1,13</td>
<td>0,19</td>
</tr>
<tr>
<td>Saxicola torquata</td>
<td>0</td>
<td>0,56</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,93</td>
<td>0,05</td>
</tr>
<tr>
<td>S. rubetra</td>
<td>0</td>
<td>0,06</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oenanthe oenanthe</td>
<td>0</td>
<td>0,4</td>
</tr>
<tr>
<td>Phoenicurus ochruros</td>
<td>0</td>
<td>0,44</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>0,33</td>
</tr>
<tr>
<td>Ph. Moussieri</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erithacus rubecula</td>
<td>0,33</td>
<td>1</td>
<td>0,33</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
<td>0,5</td>
<td>0,17</td>
</tr>
<tr>
<td>Species</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Luscinia megarhyncha</td>
<td></td>
</tr>
<tr>
<td>Turdus philomelos</td>
<td>1.33</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>T. viscivorus</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>T. merula algira</td>
<td>0.56</td>
<td>0.88</td>
<td>0.36</td>
<td>0.07</td>
<td>1</td>
<td>0.77</td>
<td>2.43</td>
<td>0.5</td>
<td>0.67</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Monticola solitarius</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acrocephalus scirpa</td>
<td>0.33</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A. schoenobaenus</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cisticola juncidis</td>
<td>0.56</td>
<td>0.5</td>
<td>0</td>
<td>0.21</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0.33</td>
<td>0.19</td>
<td>0</td>
</tr>
<tr>
<td>Hippolais pallida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.33</td>
<td>0</td>
<td>0.57</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sylvia communis</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.29</td>
<td>0.33</td>
<td>0.11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. borin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.67</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. atricapilla</td>
<td>0.22</td>
<td>0.38</td>
<td>0</td>
<td></td>
<td>0.43</td>
<td>0.08</td>
<td>1</td>
<td>0.17</td>
<td>0.11</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>S. melanoccephala</td>
<td>0.89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.37</td>
</tr>
<tr>
<td>S. conspicillata</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>S. cantillans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Cettia cetti</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Locustella luscinioide</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulus ignicapilla</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylloscopus collybit</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
<td>0.75</td>
<td>0</td>
<td>1.06</td>
<td>1.08</td>
<td>0.53</td>
</tr>
<tr>
<td>P. trochilus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P. bonelli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Muscicapa striata</td>
<td>0.5</td>
<td>0</td>
<td>0.09</td>
<td>0.29</td>
<td>0</td>
<td>0.09</td>
<td>0.14</td>
<td>0</td>
<td>0.14</td>
<td>1</td>
<td>0.56</td>
</tr>
<tr>
<td>Ficedula hypoleuca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Parus major</td>
<td>0</td>
<td>0.06</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0.11</td>
<td>0.13</td>
<td>0.1</td>
</tr>
<tr>
<td>P. caeruleus</td>
<td>0.33</td>
<td>0.31</td>
<td>0</td>
<td>0.07</td>
<td>0.57</td>
<td>0.38</td>
<td>1</td>
<td>0.17</td>
<td>0.56</td>
<td>0.75</td>
<td>0.86</td>
</tr>
<tr>
<td>Certhia brachyactyl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Oriolus oriolus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tchagra senegal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Lanius meridionalis</td>
<td>0.11</td>
<td>0.13</td>
<td>0</td>
<td>0.5</td>
<td>0.14</td>
<td>0.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>L. senator</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.09</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0.22</td>
<td>0</td>
</tr>
<tr>
<td>Corvus monedula</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
</tr>
<tr>
<td>Miliaria calandra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.31</td>
<td>0</td>
<td>0</td>
<td>0.21</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>Emberiza cirrus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passer hispaniolensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. domest. x P. hispa</td>
<td>4.56</td>
<td>6.81</td>
<td>0.86</td>
<td>1.5</td>
<td>1.43</td>
<td>1.38</td>
<td>3.43</td>
<td>0.17</td>
<td>1.89</td>
<td>4.25</td>
<td>6</td>
</tr>
<tr>
<td>P. montanus</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fringilla coelebs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.21</td>
<td>0.14</td>
<td>0.08</td>
<td>0.29</td>
<td>0</td>
<td>0.22</td>
<td>0.92</td>
<td>1.43</td>
</tr>
<tr>
<td>Serinus serinus</td>
<td>2.22</td>
<td>0.29</td>
<td>0.86</td>
<td>0.14</td>
<td>0.08</td>
<td>0.57</td>
<td>1</td>
<td>2.67</td>
<td>5.79</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>Carduelis</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
<td>0</td>
<td>0.54</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>
Etude de l’Avifaune de la Mitidja

<table>
<thead>
<tr>
<th>cannabina</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. carduelis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,15</td>
<td>0,14</td>
<td>0</td>
<td>0,21</td>
</tr>
<tr>
<td>C. chloris</td>
<td>1,33</td>
<td>0,44</td>
<td>2,21</td>
<td>0,5</td>
<td>1,29</td>
<td>0,92</td>
<td>1,29</td>
<td>0,44</td>
</tr>
<tr>
<td>Sturnus unicolor</td>
<td>0,89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Valeurs maximales</td>
<td>6,11</td>
<td>17,06</td>
<td>5,67</td>
<td>6,14</td>
<td>2,14</td>
<td>12</td>
<td>3,43</td>
<td>2,5</td>
</tr>
<tr>
<td>Valeurs minimales</td>
<td>0,11</td>
<td>0,06</td>
<td>0,07</td>
<td>0,07</td>
<td>0,14</td>
<td>0,08</td>
<td>0,14</td>
<td>0,11</td>
</tr>
<tr>
<td>S = 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Régh : Réghaïa ; Mefta. : Meftah ; Cherar. : Cherarba ; O.smar : Oued smar ; Ain N. : Ain Naadjia ;
Birtou. : Birtouta ; Boufar. : Boufarik ; Bourki. : Bourkika.

3.1.3.2. – Diagnostic écologique du peuplement avien en fonction des stations

On trouvera dans le tableau 12 les valeurs des paramètres écologiques du peuplement avien de la Mitidja.

Tableau 12 - Paramètres écologiques appliqués aux espèces d’oiseaux dans les différents points
d’échantillonnage de la Mitidja

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>s</th>
<th>T</th>
<th>N. obs.</th>
<th>H’</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Réghaïa</td>
<td>31</td>
<td>5,91</td>
<td>19,06</td>
<td>260</td>
<td>4,15</td>
<td>0,84</td>
</tr>
<tr>
<td>2 – Rouiba</td>
<td>26</td>
<td>6</td>
<td>23,08</td>
<td>641</td>
<td>3,14</td>
<td>0,67</td>
</tr>
<tr>
<td>3 – Meftah</td>
<td>23</td>
<td>5,04</td>
<td>21,91</td>
<td>190</td>
<td>2,71</td>
<td>0,60</td>
</tr>
<tr>
<td>4 – Cherarba</td>
<td>25</td>
<td>3,65</td>
<td>14,60</td>
<td>205</td>
<td>2,29</td>
<td>0,49</td>
</tr>
<tr>
<td>5 – Oued Smar</td>
<td>28</td>
<td>2,29</td>
<td>8,18</td>
<td>123</td>
<td>4,31</td>
<td>0,90</td>
</tr>
<tr>
<td>6 – Baraki</td>
<td>35</td>
<td>3,74</td>
<td>10,69</td>
<td>345</td>
<td>3,97</td>
<td>0,77</td>
</tr>
<tr>
<td>7 – Ain Naadjia</td>
<td>23</td>
<td>2,22</td>
<td>9,65</td>
<td>150</td>
<td>2,61</td>
<td>0,58</td>
</tr>
<tr>
<td>8 – Chebli</td>
<td>10</td>
<td>2,9</td>
<td>29,00</td>
<td>57</td>
<td>2,42</td>
<td>0,73</td>
</tr>
<tr>
<td>9 – Birouta</td>
<td>17</td>
<td>2,06</td>
<td>12,12</td>
<td>114</td>
<td>3,44</td>
<td>0,84</td>
</tr>
<tr>
<td>10 – Boufarik</td>
<td>32</td>
<td>7,66</td>
<td>23,94</td>
<td>760</td>
<td>3,80</td>
<td>0,76</td>
</tr>
<tr>
<td>11 – Blida</td>
<td>43</td>
<td>2,91</td>
<td>6,77</td>
<td>456</td>
<td>4,19</td>
<td>0,77</td>
</tr>
<tr>
<td>12 – Bourkika</td>
<td>39</td>
<td>4,26</td>
<td>10,92</td>
<td>551</td>
<td>4,40</td>
<td>0,83</td>
</tr>
</tbody>
</table>

S : Richesse totale ; s : Richesse moyenne; T : Coefficient d’homogénéité ; N. obs. : Nombre
d’observations ; H’ : Indice de diversité de Shannon-Weaver ; E : Indice
d’Equirépartition

Chacun des indices pris en considération dans le tableau 12 est traité à part dans les
sous-paragraphes suivants.
3.1.3.2.1. – Richesse totale S des oiseaux de la Mitidja

Dans les 12 stations d'étude la richesse totale S présente de grandes variations (Tab. 12), et atteint ses valeurs maximales dans les plus occidentale, atteignant 43 espèces à Baida et 39 à Bourkika. Ces deux stations correspondent à des milieux ouverts. Ces valeurs diminuent dans la partie centrale de la Mitidja, notamment à Baraki (35 espèces) et à Boufarik (32 espèces). Plus à l’est, ces valeurs ne changent guère à Régahaia (31 espèces), mais baissent encore à Meftah avec 23 espèces. L’une des explications les plus plausibles est que cet appauvrissement faunistique soit dû à l’impact de l’urbanisation. On remarque deux stations avec des richesses totales très faibles, Chebli (10 espèces) et Birtouta (17 espèces). Cependant, la faible valeur de S dans ces stations pourrait aussi être être en relation avec le faible nombre de relevés qui y ont été effectués (relativement 7 et 9).

3.1.3.2.2. – Richesse moyenne s.

Il s’agit de la richesse moyenne stationnelle, qui correspond au nombre moyen des espèces contactées dans chaque station échantillonnée (Tab.12). Les valeurs des richesses moyennes se situent entre 2,1 (Birtouta) et 7,7 (Boufarik). Globalement, s est le plus faible au milieu de la région d’étude, de Cherarba (3,65) à Birtouta (2,06), exception faite de Boufarik où sa valeur est la plus élevée (7,7).

3.1.3.2.3. – Coefficient d'homogénéité T.

Dans un peuplement donné, la valeur de T est d’autant plus grande que ce peuplement est plus homogène (BLONDEL et al., 1981). Inversement, plus sa valeur est faible et plus le peuplement peut être considéré comme hétérogène. D’après nos résultats, les valeurs de T sont faibles dans l’ensemble des stations d’échantillonnage. Sa valeur maximale est observée à Chebli (T = 29), suivi de Boufarik (T = 23,9), de Rouiba (T = 23,1) et de Meftah (T = 21,9). Dans les autres stations la valeur de ce coefficient demeure très faible et atteint son niveau le plus bas à Baida avec seulement 6,8. De ce fait, on peut considérer les peuplements aviens de la Mitidja comme généralement très hétérogènes (Tab. 12). Il est à souligner que plus l’écart entre la richesse moyenne et la richesse totale devient important, plus le nombre d’espèces rares est grand. C’est surtout le cas à Bilda (S = 43 ; s = 2,9), à Oued Smar (S = 28 ; s = 2,3), à Ain Naadja (S = 23 ; s = 2,2), à Baraki (S = 35 ; s = 3,7) et à Bourkika (S = 39 ; s = 4,3) (Tab. 12). Les espèces considérées comme rares dans ces milieux sont à Bilda Galerida theklæ, Anthus trivialis, Sylvia cantillans, Phylloscopus trochilus et Corvus monedula ; à Oued Smar Motacilla flava et Phoenicurus moussieri, à Ain Naadja, Lullula arborea, Certhia brachydactyla et Psittacula krameri, à Baraki, Calandrella brachydactyla, Anthus pratensis, Acrocephalus schoenobaenus et Sylvia borin, et enfin à Bourkika Pterocles orientalis, Calandrella rufescens et Tchagra senegalae.

3.1.3.2.4. – Indice de diversité de Shannon-Weaver appliqué au peuplement
avien de la Mitidja

Globalement, la diversité est variable au sein des 12 sites d’échantillonnage. L’indice de diversité de Shannon-Weaver H' est supérieur à 4 dans quatre stations, Réghaïa (4,2 bits), d’Oued Smar (4,3), de Bliida (4,2) et de Bourkika (4,4). Par ailleurs des valeurs de H' comprises entre 3 et 4 bits caractérisent les stations de Rouiba (3,2), Baraki (3,97), Birouta (3,4) et Boufarik (3,8). Dans les autres stations les valeurs de l’indice de diversité de Shannon-Weaver sont relativement moins élevées, notamment à Cherarba (2,3 bits), Meftah (2,7), Chebli (2,4) et Ain Naadja (2,6).

3.1.3.2.5. - Indice d’équirépartition E

Il est à souligner que dans 11 stations sur 12 presque toutes les stations les valeurs de l’indice d’équirépartition E sont égales ou supérieures à 0,58. A Cherarba seulement elle est à peine inférieure à 0,5 (0,49). On peut donc considérer que, dans toutes les stations, les effectifs des espèces avinnes tendent à être en équilibre entre eux. Cependant, plusieurs stations limitrophes de la plaine de la Mitidja, situées en aval de l’Atlas tellien, au pied des premières collines qui annoncent Djebel Bouzegza ou encore près du piémont du Sahel algérois se caractérisent par des valeurs proches de 1 comme Réghaïa (0,8), Bourkika (0,83), Blida (0,77), Birouta (0,84), Baraki (0,77) et Oued Smar (0,9). Ces stations périphériques sont situées à proximité de milieux peu perturbés comme les forêts, les maquis et friches de l’Atlas tellien et du flanc sud du Sahel algérois, ce qui explique pourquoi les effectifs de ces espèces ont une forte tendance à s’équilibrer. Il faut ajouter qu’une zone industrielle s’est développée depuis plusieurs décennies dans la partie orientale de la Mitidja, offrant des conditions de vie difficiles aux oiseaux par l’augmentation de la pollution et la raréfaction des ressources alimentaires. Au contraire, certaines espèces semblent favorisées au cœur de la plaine du fait de l’agriculture intensive, tant maraîchère que céréalière. C’est le cas des oiseaux granivores, dont les effectifs sont en augmentation, comme on peut le constater chez la Tourterelle des bois, la Tourterelle maillée et la Tourterelle turque, les pigeons bisets et ramiers. Ce phénomène s’observe aussi chez les Fringillides comme le Verdier d’Europe, le Serin cini et le moineau hybride. Certaines espèces frugivores pullulent un peu partout comme le Bulbul des jardins et le Merle noir. Au contraire, d’autres oiseaux plus sensibles à l’anthropisation se raréfient comme le Rossignol philomèle, la Bécasse des bois, le Torcicol fourmilier ou le Pic épeichette. Il s’ensuit un déséquilibre notable entre les espèces présentes.

3.1.4. – Fréquences centésimales des principales espèces d’oiseaux observées en Mitidja

Parmi les 61 espèces avinnes recensées dans la plaine de la Mitidja, vingt d’entre elles retiennent l’attention par leur fréquence élevée : La Perdrix gambra *Alectoris barbara*, le Pigeon ramier *Columba* palumbus, la Tourterelle des bois *Streptopelia turtur*, la

Tableau 13 – Fréquences centésimales des espèces d’oiseaux notées dans la plaine de la Mitidja
<table>
<thead>
<tr>
<th>Stations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coturnix coturnix</td>
<td>0.42</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Alectoris barbara *</td>
<td>1.02</td>
<td>0.92</td>
<td>0</td>
<td>0</td>
<td>1.35</td>
<td>0</td>
<td>0</td>
<td>2.97</td>
<td>0.82</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Scolopax rusticola</td>
<td>0.34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pterocles orientalis</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>Columbia livia</td>
<td>18.98</td>
<td>44.72</td>
<td>0</td>
<td>37.05</td>
<td>10.08</td>
<td>4.91</td>
<td>3.09</td>
<td>0</td>
<td>14.38</td>
<td>22.35</td>
<td>1.90</td>
<td>7.09</td>
</tr>
<tr>
<td>C. palumbus *</td>
<td>0</td>
<td>1.81</td>
<td>6.31</td>
<td>4.28</td>
<td>8.51</td>
<td>14.50</td>
<td>11.60</td>
<td>3.28</td>
<td>0</td>
<td>2.84</td>
<td>0.88</td>
<td>0.62</td>
</tr>
<tr>
<td>C. oenas</td>
<td>4.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Streptopelia turtur *</td>
<td>2.08</td>
<td>0</td>
<td>11.36</td>
<td>1.75</td>
<td>3.63</td>
<td>42.66</td>
<td>2.33</td>
<td>0</td>
<td>7.41</td>
<td>4.57</td>
<td>4.91</td>
<td>0.96</td>
</tr>
<tr>
<td>S. senegalensis *</td>
<td>1.37</td>
<td>0.16</td>
<td>2.32</td>
<td>1.75</td>
<td>1.57</td>
<td>0.28</td>
<td>0</td>
<td>3.28</td>
<td>0</td>
<td>0.12</td>
<td>0.44</td>
<td>2.07</td>
</tr>
<tr>
<td>S. decaocto</td>
<td>1.74</td>
<td>1.65</td>
<td>2.32</td>
<td>4.77</td>
<td>11.60</td>
<td>0</td>
<td>3.09</td>
<td>3.28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.93</td>
</tr>
<tr>
<td>Cuicus canorus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Psittacula krameri *</td>
<td>1.71</td>
<td>0.81</td>
<td>0</td>
<td>0</td>
<td>1.57</td>
<td>0</td>
<td>7.75</td>
<td>48.17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coracias garrulus</td>
<td>0</td>
<td>0</td>
<td>0.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Merops apiaster *</td>
<td>12.95</td>
<td>0</td>
<td>17.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
</tr>
<tr>
<td>Upupa epops</td>
<td>0</td>
<td>0</td>
<td>0.83</td>
<td>0.84</td>
<td>1.79</td>
<td>0</td>
<td>2.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
</tr>
<tr>
<td>Dendrocopos minor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jynx torquilla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Galeria cristata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.76</td>
<td>1.92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.06</td>
<td>0</td>
<td>0.96</td>
</tr>
<tr>
<td>Alauda arvensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>5.79</td>
<td></td>
</tr>
<tr>
<td>Galeria theklae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lullula arborea</td>
<td>0</td>
<td>0</td>
<td>1.27</td>
<td>0</td>
<td>0.28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.24</td>
<td>0.44</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Melanocorypha caland.</td>
<td>0</td>
<td>0</td>
<td>0.84</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>Calandrella rufescens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.62</td>
<td>0.34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C. brachyactyla</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Motacilla alba *</td>
<td>2.08</td>
<td>3.12</td>
<td>26.30</td>
<td>2.07</td>
<td>6.78</td>
<td>0.82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.01</td>
<td>0</td>
<td>7.09</td>
</tr>
<tr>
<td>M. caspica</td>
<td>0</td>
<td>0.34</td>
<td>1.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>M. flava</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.79</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anthus trivialis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.49</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pratensis</td>
<td>0</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anthus sp</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trogodytes troglodytes</td>
<td>1.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.76</td>
<td>0</td>
<td>1.52</td>
<td>0.44</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Pycnonotus barbatus *</td>
<td>2.08</td>
<td>1.15</td>
<td>0.32</td>
<td>1.75</td>
<td>6.99</td>
<td>0</td>
<td>3.09</td>
<td>0</td>
<td>8.61</td>
<td>3.45</td>
<td>0.84</td>
<td>2.47</td>
</tr>
<tr>
<td>Saxicola torquata</td>
<td>0</td>
<td>1.47</td>
<td>0</td>
<td>0</td>
<td>1.57</td>
<td>0.28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.84</td>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>S. rubra</td>
<td>0</td>
<td>0.16</td>
<td>0</td>
<td>1.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oenanthe oenanthe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.93</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Phoenicurus ochruros</td>
<td>0</td>
<td>1.15</td>
<td>0</td>
<td>0.84</td>
<td>0</td>
<td>1.78</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>1.58</td>
<td>0</td>
</tr>
<tr>
<td>Ph. Moussieri</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
<td>0</td>
<td>0.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>1.02</td>
<td>2.62</td>
<td>1.53</td>
<td>1.57</td>
<td>0</td>
<td>0</td>
<td>3.28</td>
<td>0</td>
<td>1.52</td>
<td>0.75</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Erithacus rubecula</td>
<td>0.84</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.95</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. megarhynchos</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.36</td>
<td>7.11</td>
<td>0</td>
<td>0</td>
<td>1.34</td>
<td>2.21</td>
<td>5.79</td>
<td></td>
</tr>
<tr>
<td>Turdus phylomelos</td>
<td>4.13</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>T. viscivorus</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.74</td>
<td>2.31</td>
<td>1.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T. merula algira *</td>
<td>0.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Monticola solitarius</td>
<td>1.02</td>
<td>0.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acrocephalus scirpaceus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.63</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>A. schoenobaenus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.33</td>
<td>0.28</td>
<td>5.42</td>
<td>3.28</td>
<td>0.95</td>
<td>1.40</td>
<td>2.12</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Cisticola juncidis *</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.53</td>
<td>0.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>Sylvia communis</td>
<td>0.84</td>
<td>1.01</td>
<td>0</td>
<td>1.89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. atricapilla *</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. melanocephala *</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. cabotii</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. cantillans</td>
<td>0</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Cettia cetti</td>
<td>0</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Locustella luscinoides</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Regulus ignicapilla</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Phylloscopus collybita</td>
<td>0</td>
<td>0</td>
<td>4.07</td>
<td>0</td>
<td>4.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.23</td>
<td>4.78</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>P. trochilus</td>
<td>0</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>P. bonelli</td>
<td>0</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Muscicapa striata *</td>
<td>0</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Ficedula hypoleuca</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Parus major *</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>P. caeruleus *</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.44</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certhia brachydactyla</td>
<td>0</td>
<td>0</td>
<td>0.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Oriolus oriolus</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tchagra senegal</td>
<td>0</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Lanius meridionalis *</td>
<td>0</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>L. senator</td>
<td>0</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Corvus monedula</td>
<td>0</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Miliaria calandra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.64</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>Emberiza cirulus</td>
<td>0</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Passer hispaniolensis</td>
<td>0</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>P. domest. X P. hispan. *</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P. montanus</td>
<td>0.34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fringilla coelebs *</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Serinus serinus *</td>
<td>6.89</td>
<td>10.48</td>
<td>1.35</td>
<td>5.19</td>
<td>0.76</td>
<td>0.28</td>
<td>3.09</td>
<td>19.27</td>
<td>23.00</td>
<td>17.66</td>
<td>0</td>
<td>6.75</td>
</tr>
</tbody>
</table>
Etude de l’Avifaune de la Mitidja

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0,32</th>
<th>0</th>
<th>0</th>
<th>0,82</th>
<th>0</th>
<th>0</th>
<th>1,65</th>
<th>1,06</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carduelis cannabina</td>
<td>0</td>
<td>0</td>
<td>0,32</td>
<td>0</td>
<td>0</td>
<td>0,82</td>
<td>0</td>
<td>0</td>
<td>1,65</td>
<td>1,06</td>
<td>0</td>
</tr>
<tr>
<td>C. carduelis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,53</td>
<td>0,76</td>
<td>0</td>
<td>0,64</td>
<td>1,90</td>
<td>0</td>
</tr>
<tr>
<td>C. chloris *</td>
<td>4,13</td>
<td>1,15</td>
<td>10,25</td>
<td>3,02</td>
<td>6,99</td>
<td>3,27</td>
<td>6,99</td>
<td>0</td>
<td>3,79</td>
<td>3,17</td>
<td>10,31</td>
</tr>
<tr>
<td>Sturnus unicolor</td>
<td>2,76</td>
<td>0</td>
</tr>
<tr>
<td>Totaux</td>
<td>100</td>
</tr>
</tbody>
</table>

* : espèces dont la fréquence est la plus élevée.

Certaines espèces à grand espace vital, comme le Héron garde-boeufs, la Cigogne blanche, l’étourneau sansonnet, les hirondelles de fenêtre et de cheminée, les martinets pâle et noir, ainsi que les rapaces diurnes ne sont pas mentionnées dans le tableau 13. Les rapaces nocturnes ne le sont pas non plus du fait de leur difficulté d’observation.

Chacune des 20 espèces choisie sera discutée à part.

3.1.4.1. – La Perdrix gambra Alectoris barbara

La Perdrix gambra est signalée de 5 stations au sein de la région d’étude. Les valeurs de sa fréquence centésimale (F) fluctuent entre 0,8 et 9,3 % (Fig. 17a). Il est à souligner que les stations les plus proches de l’Atlas tellien se caractérisent par des valeurs assez fortes, notamment celles de Haouch El Makhfi près de Meftah (9,3 %) et de Blida près d’Ouled Aïch (3 %). Au contraire, à la ferme d’El Aïchi aux abords de Baraki dans la partie centrale de la Mitidja, la valeur de F est de 1,4 %. Dans cette zone la perdrix arrive cependant à se maintenir et à se reproduire. Aux extrémités de la Mitidja, à l’Est (Réghaia) la Perdrix gambra subsiste avec un taux de 1 % et à l’Ouest (Bourkika) de 0,8 %.

3.1.4.2. – Le Pigeon ramier Columba palumbus

Dans la région d’étude, le Pigeon ramier est une espèce ancienne, mais dont la population a connu une progression considérable ces dernières années. Les valeurs les plus importantes de sa fréquence ont été surtout notées dans les stations du centre de la Mitidja et, à un moindre degré, dans celles de la partie orientale de celle-ci (Fig.17b). Les valeurs les plus fortes proviennent de Baraki (14,5 %), Ain Naadja (11,6 %), Oued Smar (8,5 %) et Meftah (6,4 %). Dans les autres stations les valeurs de F fluctuent entre 0,6 % (Bïda) et 4,3 % (Cherarba). Le pigeon ramier semble absent (F = 0) de l’extrême sud-est de la plaine (Réghaia) ainsi que de son extrême Ouest (Bourkika), mais il ne s’agit que d’une apparence, car il y a été observé en dehors des relevés.

Au mois de mars, il est fréquent d’observer des Pigeons ramiers en train de consommer des bourgeons de frène. Il mange aussi des baies de Palmier des Canaries Phoenix canariensis, des fruits de Ficus carica et même des olives en hiver. Le Ramier se déplace en bandes dépassant souvent cent individus lorsqu’il se déplace entre ses dortoirs et ses lieux de gagnage au cœur de la Mitidja. Cet aspect de son comportement sera développé dans le paragraphe traitant des espèces introduites ou en pleine expansion.
Fig. 17 – Fréquences des espèces du peuplement avien de la Mitidja

1 : Réghaïa ; 2 : Rouiba ; 3 : Meftah ; 4 : Cherarba ; 5 : Oued Smar ; 6 : Baraki

3.1.4.3. – La Tourterelle des bois *Streptopelia turtur*

La Tourterelle des bois a été observée dans pratiquement toutes les stations
d’échantillonnage, à l’exception de Rouiba et de Chebli, où elle a cependant été contactée
en dehors des relevés. Sa valeur maximale de F, très forte (42,7 %), est atteinte à Baraki
(Fig. 17c). Elle est beaucoup plus faible à Meftah (11,4 %) et à Birtouta (7,4 %), et surtout
dans les autres stations, où elle fluctue entre 0,96 % (Bourkika) et 4,9 % (Blida). Elle
semble en expansion et occupe pratiquement tous les types de milieux, même des zones
interurbaines.

En 2004 et 2006, la Tourterelle des bois est arrivée dans la Mitidja entre le 4 et le 7
avril, soit à peu près une semaine plus tôt que les autres années, quand elle est apparue entre le 12 et le 15 du même mois. Dès la fin d’avril, la Tourterelle des bois chante intensément à partir de 5 h 30', peu après le Merle noir. A la fin de la période de reproduction, les derniers couples partent en migration post-nuptiale pendant la première quinzaine de septembre, comme le montrent l’observation de 12 sub-adultes perchés sont notés sur un vieil eucalyptus à El Djemhouria le 4 septembre 2006 à 17 h 30, et celle d’une quarantaine d’individus perchés sur des fils électriques le 13 septembre année ? près de Baraki

3.1.4.4. – La Tourterelle maillée Streptopelia senegalensis
Bien que discrète et de taille plus petite que les autres espèces de tourterelles, la tourterelle maillée est assez fréquemment observée dans la plaine par petits groupes de 2 à 4 individus. Les valeurs de sa fréquence sont relativement faibles par rapport à celles de la Tourterelle des bois. En effet lles valeurs maximum de F, ont été notées dans la station de Chebli (3,3 %), de Meftah (2,3 %) et de Bourkika (2,1 %) (Fig. 17d). Les autres stations présentent des fréquences très faibles, allant de 0,12 % (Boufarik) à 1,6 % (Oued Smar). Il est à souligner que, malgré sa faible présence la Tourterelle maillée montre une répartition régulière dans toute la plaine, au contraire de la tourterelle des bois qui se présente en agrégats. Au printemps (mars), la Tourterelle maillée s’observe le matin, souvent au sol, à la recherche de nourriture comme des graines de Casuarina torulosa, de Pistacia lentiscus et d’Eucalyptus. En automne (novembre), elle consomme, toujours au sol, des graines de Tipuana speciosa, des déchets alimentaires humains, en compagnie de la Tourterelle turque. Elle ingère aussi fréquemment de petits cailloux. La Tourterelle maillée paraît plus active et plus alerte dans la plaine de la Mitidja que sur le Littoral. Les teintes de son plumage sont plus tranchées. Son corps semble plus volumineux et ses envols plus énergiques

3.1.4.5. – La Perruche à collier Psittacula krameri
La Perruche à collier est l’unique espèce exotique à la région, et se classeen fait parmi les espèces à grand canton. Elle semble au début de sa période d’expansion et ses effectifs sont encore assez modestes. Dans la plaine de la Mitidja, elle est rarement contactée sur le terrain et surtout lors d’échantillonnages. Il faudrait pouvoir multiplier les sorties afin de mieux connaître sa distribution précise et ses mouvements. Nous ne l’avons rencontrée que sur cinq de nos stations, et sa fréquence n’a été importante (F = 48,8 %) qu’aux environs de Chebli. Sa fréquence est beaucoup plus faible à Ain Naadja (7,8 %), et surtout à Régaha (1,7 %), Oued Smar (1,6 %) et Rouiba (0,8 %) (Fig. 18a). Cependant, des enquêtes menées auprès de cultivateurs et d’habitants ont montre la présence de l’espèce dans des localités où nous ne l’avons pas rencontrée dans nos relevés, comme à Meftah, Baraki, Boufarik et Bourkika. Jusqu’à présent, aucun signe de sa présence n’a été relevé dans les stations de Cherarba, de Birtouta et de Bilda. Nous verrons cette question plus en détail dans la partie réservée aux espèces introduites ou en pleine expansion.
3.1.4.6. – Le Guêpier d’Europe *Merops apiaster*

Dans la Mitidja le Guêpier d’Europe est toujours signalé en des endroits où l’on trouve une source ou bien des ruchers, voire même des deux. Dans le cadre de cette étude, nous ne l’avons trouvé que dans deux stations Oued El Makhfi près de Meftah (F = 17,3 %), et aux abords du marais de Réghaïa (13,0 %) (Fig. 18b). On le rencontre généralement au vol, toujours en groupes de 25 à 50 individus, qui le plus souvent émettent des cris. Il se perche volontiers sur les brise-vent de filaos (*Casuarina torulosa*), elle rejette des pelotes formées de fragments de diverses espèces d’Hyménoptères. En dehors des stations d’étude, le Guêpier d’Europe a été observé à Rouiba, Birtouta et Boufarik. Dans ces deux dernières localités il est attiré par les abeilles des ruchers. Entre le 1 et le 7 septembre 2004, des groupes de 30 à 40 individus en ont été observés au crépuscule en train de percher sur les eucalyptus dans les jardins de l’Institut national agronomique d’El Harrach (I.N.A.). Il s’agissait visiblement de vagues d’individus en migration, provenant de leurs aires européennes de reproduction et allant vers leurs zones d’hivernage tropicales.

3.1.4.7. – La Bergeronnette grise *Motacilla alba*

La Bergeronnette grise fréquente les milieux ouverts exceptionnellement les terres labourées où elle se nourrit de différentes espèces d’arthropodes vivant au sol. Pendant la période d’hivernage l’espèce est beaucoup plus présente à l’Est et à l’ouest de la Plaine de la Mitidja qu’au
Fig. 18 - Fréquences des espèces du peuplement avien de la Mitidja

centre. Elle est attirée par les sols labourés, la terre humide et les plans d’eau, même extrêmement petits comme des flaques laissées par la pluie.

C’est à Meftah que nous avons noté sa fréquence centésimale maximum de cette espèce (26,3 %), qui est assez forte. Celles observées à Bourkika (7,1 %) et à Oued Smar (6,8 %) sont nettement inférieures (Fig. 18c). Sur les autres stations, ces fréquences sont très faibles et comprises entre 0,82 % (Baraki) et 3,2 % (Rouiba). Un groupe de neuf Bergeronnettes grises a été observé près d’El Djemhouria dans une parcelle agricole labourée le 2 février 2006, les unes cherchant leurs proies entre les mottes de terre, et les autres se chauffant au soleil sur ces dernières.

3.1.4.8. – Le Bulbul des jardins **Pycnonotus barbatus**

Le Bulbul des jardins existe dans toute la zone d’étude (Fig. 18d). On le rencontre rarement à l’état solitaire, et les couples ne sont guère observés que pendant la période
de reproduction. Il apparaît le plus souvent en petits groupes de 3 à 6 individus, voire davantage. Ses fréquences centésimales ont toujours été faibles à très faibles, les plus fortes ayant été notées à Birtouta (8,6 %) et à Oued Smar (7,0 %). Elles sont encore plus basses à Boufarik (3,5 %) et à Ain Naadja (3,1 %). Dans les autres stations, elles varient de 2,4 % à Bourkika à 0,3 % (Meftah) (Fig. 18d). Le Bulbul des jardins est frugivore, et joue un grand rôle dans l’ornithochorie. Il consomme les baies et les fruits charnus de différentes espèces végétales, auxquels il ajoute quelques proies animales, essentiellement en période de reproduction (MILLA, 2005b). À cette époque de l’année il prélève des soies dans les bourses de la processionnaire du pin (Thaumetopoea pityocampa) qu’il utilise lors de la construction de son nid.

3.1.4.9. – Le Merle noir Turdus merula

Le Merle noir a été contacté dans toutes nos stations d’échantillonnages (Fig. 19a). Ses fréquences centésimales les plus importantes ont été notées dans la partie centrale de la Mitidja, dans des vergers d’agrumes ou de néfliers associés à des cultures maraîchères. Il y est représenté par des effectifs notables et y est très actif. Pendant la période de reproduction il installe son nid à faible hauteur (1 à 2 m), au milieu de la couronne foliaire d’un oranger, d’un poirier, d’un néflier ou sur un brise-vent comme le filao. Sa fréquence centésimale n’est jamais très importante, atteignant 13,2 % à Ain Naadja, 9,7 % à Chebli, 9,3 à Ouled Aïch (près de Blida) et 7,6 % à Boufarik. Dans les autres stations, les valeurs des fréquences centésimales du Merle noir oscillent entre 0,4 % à Cherarba 5,4 %) près d’Oued Smar (Fig. 19a).
Fig. 19 – Fréquences des espèces du peuplement avien de la Mitidja

1 : Réghaïa ; 2 : Rouiba ; 3 : Meftah ; 4 : Cherarba ; 5 : Oued Smar ; 6 : Baraki

La station d’Ouled Aïch est une des plus occidentales de la plaine, et se caractérise par un complexe arbustif particulier. Les vergers d’agrumes y voisinent avec des maquis d’oléastres et de frênes sur des terrains en pente qui annoncent les premiers reliefs du Djebel Feraoun dont la végétation est riche en ressources trophiques. La station de Cherarba possède un milieu semi-ouvert. La station d’Oued Smar se trouve près de parcs et de jardins. Le Merle noir y exploite diverses plantes d’ornement comme *Washingtonia filifera*, *W. robusta*, *Phoenix canariensis*, *Cocos sp*, *Celtis australis* et *Melia azedarach*.

3.1.4.10. – Le Cisticole des joncs *Cisticola juncidis*

Le Cisticole des joncs est, dans la région d’étude, le plus petit passereau après le
troglodyte. Il est reconnaissable à son vol territorial composé de légères élévations alternant avec des descentes de faible amplitude, rythmées de son chant typique " tsip ! tsip ! tsip ! tsip! ". Le Cisticole des joncs n’est présent en Mitidja qu’en faibles effectifs. Les valeurs de sa fréquence varient entre 0,8 % (Blida) et 1,9 % (Boufarik) (Fig. 19b). Ce n’est cependant pas une espèce très exigeante dans le choix de son milieu. Il lui suffit de trouver une petite aire ouverte avec une végétation basse et des buissons pour s’y installer. Ses effectifs n’ont rarement dépassé la densité de 5 individus dans une aire de 15 hectares (0,33 c. / ha), avec une distribution très irrégulière.

3.1.4.11. – La Fauvette à tête noire *Sylvia atricapilla*

La Fauvette à noire est une espèce pratiquement omniprésente dans la région d’étude. Elle se retrouve surtout dans les vergers de rosacées et d’oliviers, dans les parcs et les jardins dispersés de l’Algérois et de la plaine de la Mitidja. Ses fréquences centésimales ont toujours été faibles, les plus élevées étant notées à Ain Naadja (5,4 %), Chebli (3,3 %), Baraki (2,33 %) et Blida (2,12 %) (Fig. 19c). Dans la Mitidja, le manque de soins aux vergers ainsi que le délaissement d’importante superficie de terres où se développe un couvert végétal naturel ont certainement favorisé le maintien de la Fauvette à tête noire. Il est à noter que dans la grande Ile de Chausey en Normandie, la Fauvette à tête noire a connu une évolution suite aux changements de gestion lié à l’abandon des pratiques agricoles, à la disparition du pâturage et à la généralisation de la fauche (DEBOUT et GALLEN, 2006). A l’instar d’autres espèces frugivores comme le Bulbul des jardins et le Merle noir, la Fauvette à tête noire participe largement au phénomène d’ornithochorie.

3.1.4.12. – La Fauvette mélanocéphale *Sylvia melanocephala*

La Fauvette mélanocéphale possède une distribution plus locale que la Fauvette à tête noire. Au cours des 180 E.F.P., sorties d’observations et prospections sur le terrain, l’espèce n’a été signalée que de 5 stations, toujours avec des valeurs de F basses. Les plus élevées ont été trouvées aux abords du marais de Reghala (2,8 %) et près de l’Oued Bourkika (1,8 %) (Fig. 19d). Ces valeurs sont très faibles, sinon négligeables, dans les stations de Ain Naadja (0,8 %), Baraki (0,53 %) et Blida (0,44 %). Oiseau discret, la Fauvette mélanocéphale se rencontre pratiquement toujours à proximité de l’eau, paqr exemple d’un oued, d’un marais ou d’un barrage voire dans un milieu humide car non drainé.

3.1.4.13. – Le Gobe-mouche gris *Muscicapoa striata*

Le gobe-mouche gris fait partie des oiseaux estivants les mieux représentés dans la zone d’étude, et ce malgré ses faibles fréquences (Fig. 20a). Cet oiseau insectivore, reconnaissable à sa manière de capturer des proies au vol, arrive tôt en Mitidja. Il commence par s’installer sur le littoral, ou, en 2006, il a été observé dès le 7 mars dans les jardins et les parcs. Il s’installe ensuite dans les plaines. Il a été rencontré dans 9 stations, toujours avec des fréquences faibles à très faibles, allant de 3,1 % à Boufarik à 0,3 % à Baraki.

83
3.1.4.14. – La Mésange bleue *Parus caeruleus*

La Mésange bleue a été observée dans toute la région d'étude (Fig. 20b), avec une répartition assez homogène. À Meftah, elle n'a cependant été contactée, à l'œil, qu'en dehors des relevés. Elle est le plus souvent rencontrée en petits groupes de 2 à 4 individus cherchant leur nourriture, qui consiste en petits insectes comme les pucerons et les cochenilles capturés sur les rameaux et sous les feuilles de divers arbres ou arbustes, et parfois en petites baies ou des fragments de fruits. Dans ce but, elle fréquente divers arbres comme le pin d'Alep, le cyprès, le filao, le chêne, le pistachier lentisque, le peuplier et le Tipa. Toujours faibles, ses fréquences centésimales atteignent leur maximum au centre de la Mitidja avec 5,4 % à Ain Naadja et 4,8 % à Birtouta (Fig. 20b). Dans les autres stations ces valeurs fluctuent entre 0,4 % (Cherarba) et 3,8 (Blida).

3.1.4.15. – La Mésange charbonnière *Parus major*

Nos observations montrent que, dans la Mitidja, la Mésange charbonnière est peu représentée par rapport à la mésange bleue, et avec des valeurs de F nettement plus faible (fig. 20c). Si ces dernières se rapprochent de 1 (0,95) à Birtouta, au centre de la plaine, elles tombent à 0,16 à
Fig. 20 – Fréquences des espèces du peuplement avien de la Mitidja
1 : Réghaïa ; 2 : Rouiba ; 3 : Mefata ; 4 : Cherarba ; 5 : Oued Smar ; 6 : Baraki

rouiba, à l’est, et à 0,48 à l’ouest (Birtouta). On la rencontre seule ou par couples,
parfois en compagnie de la Mésange bleue. A El Djambouria, le 2 février 2006, un
couple a été observé en train de rechercher une cavité dans les mûriers Morus alba
bordant une allée en présence de 2 couples de Mésanges bleues.

3.1.4.16.- La Pie-grièche méridionale *Lanius meridionalis*.

La Pie-grièche méridionale est un oiseau des milieux ouverts. Afin de dominer son
territoire de chasse, elle se elle choisit des perchoirs bien en vue, comme des fils
electriques, des fils de fer barbelés le sommet d’arbres à couronne légère. Cependant,
pour bien couvrir les besoins alimentaire d’un couple et de ses jeunes, ce territoire est
important de sorte que sa densité est faible. Nous avons trouvé les valeurs de F les plus importantes pour cette espèce à Cherarba (3,0 %) et à Baraki (3,0 %). Dans les autres stations où nous l’avons observée ces valeurs ne dépassent guère 0,8 % comme à Oued Smar (Fig. 20d). Nous ferons une étude plus détaillée de la Pie-grièche méridionale dans la partie consacrée à l’écologie trophique et à la reproduction des espèces d’oiseaux peu connues dans la région d’étude.

3.1.4.17. – Le Moineau hybride *P. domesticus X P. hispaniolensis*

Dans la plaine de la Mitidja, le moineau hybride est omniprésent. Pratiquement à chaque sortie sur le terrain, cette espèce est observée dans l’ensemble des stations ainsi qu’à leurs alentours (Fig. 21a). Il a envahi toute la région d’étude, favorisé par certains facteurs du milieu que nous verrons plus loin. En dehors de la période de reproduction, il installe ses dortoirs ici et là, sur *Ficus retusa* à Belfort, sur *Pinus halepensis* à l’aéroport de Dar El Beida, sur *Phoenix canariensis* sur la place principale d’El Harrach, sur *Tipuana speciosa* vers Hadjout, et partout sur *Eucalyptus* sp., notamment entre Oued Smar et Meftah ainsi qu’entre Sidi Rached et Oued Alleg. Pendant la période de reproduction, il choisit des sites de nids également très éclectiques, dans de vieux hangars abandonnés près de la gare ferroviaire de Boufarik, sous les toits et les cheminées des nouveaux immeubles, dans les constructions anarchiques apparaues dans les terres de la plaine aussi dans des arbres. Ses valeurs de F sont très variables, fluctuant de 3,3 % à Chebli à 26,6 % à Blida (Fig. 21a), en grande partie à cause de son caractère très grégaire, qui fait qu’on le rencontre le plus souvent en grandes bandes. Très polyrophage, il consomme tout aussi bien des insectes comme les fourmis, que les bourgeons de diverses espèces végétales, des fruits et même des fleurs. Le 12 février 2004, nous avons observé des Moineaux hybrides en train de manger des pétales de *Jacaranda mimosae folia* dans les jardins de l’I.N.A. Du fait de ses effectifs importants par rapport à
Fig. 21 – Fréquences des espèces du peuplement avien de la Mitidja

1 : Réghaïa ; 2 : Rouiba ; 3 : Meftah ; 4 : Cherarba ; 5 : Oued Smar ; 6 : Baraki

cel d 1 o u t r u 1 p s s e u r e u x, i l c o n s t i t u e u n e p r o i e f a c i l p o u r p l u s e u r s e s p è c e s d e p r é d a t e u r s, n o t a m m e n t le faucon crécerelle *Falco tinnunculus* et les chouettes *Strix aluco* et *Tyto alba*.

3.1.4.18. – Le Pinson des arbres *Fringilla coelebs*

Le pinson des arbres est mieux représenté dans les parties occidentale et centrale de la Mitidja que dans la partie orientale. Les valeurs de F sont assez faibles chez lui : 6,3 % à Blida, 5,2 % à Bourkika, 2,8 % à Boufarik et 1,9 % à Birtouta (Fig. 21b). Il n’a pas été observé à Réghaïa, ni à Rouiba et à Meftah. Il fréquente souvent les filao *Casuarina torulosa*, dont il peut dévorer les graines encore vertes qu’il picore au sol ou sur la plante,
comme nous avons pu l'observer près d'Ouled Aïch, le 13 mars 2004. Il est absent des milieux ouverts comme les champs et les prairies au contraire d'autres espèces de Fringillidés tels que le Verdier d'Europe, le Chardonneret et le Serin cini.

3.1.4.19. – Le Serin cini *Serinus serinus*

Le Serin cini est une espèce très abondante dans les milieux agricoles, en particulier dans les zones maraichères où il apprécie particulièrement les cyprès *Cupressus sempervirens pyramidalis* et *C. sempervirens horizontalis* qui servent de brise-vent. Il a été noté dans l'ensemble des stations d'échantillonnage à l'exception de Blida où il n'a été observé qu'en dehors des relevés (Fig. 21c). Sa fréquence F est élevée à Birouta (23 %), Chebi (19,8) et Boufarik (17,7), et un plus basse à Rouiba (10,5). Elle est basse à très basse dans les autres stations d'échantillonnages où elle varie de 0,3 % (Baraki) à 6,9 % (Réghaïa). En automne et en hiver, le Serin cini acquiert une tendance grégaire et tend à se regrouper en bandes, comme celle d'une vingtaine d'individus que nous avons observée à Cherarba en octobre 2006 sur une parcelle de tomates, où celle de plus de 30 oiseaux attirés par de l'eau stagnante, notée en novembre 2006 près de Rouiba, ou encore celle de plus de 35 oiseaux observée en décembre 2006 à Boufarik dans des parcelles de choux fleurs, en compagnie de quelques linottes mélodieuses *Acanthis cannabina*.

3.1.4.20. – Le Verdier d'Europe *Carduelis chloris*

Le Verdier d'Europe est bien représenté partout dans la plaine de la Mitidja (Fig. 21d). Il y fréquente les brises-vent, en particulier ceux formés de filaos, les vergers et les milieux ouverts, champs et prairies. On le retrouve jusque dans les jardins qui se retrouvent des villages. C'est dans les stations du sud, proches de l'Atlas tellien, que ses valeurs de F sont les plus fortes (10,3 à Blida et à Meftah), et peu supérieures à celles du nord de la plaine (7,0 à Oued Smar et Ain Naadja) (Fig. 21d). La plupart des autres stations montrent une certaine homogénéité de leurs valeurs de F (Cherarba 3,0 %, Baraki 3,3 %, Birouta 3,8 % et Boufarik 3,2 %) La station de Rouiba se signale par une faible valeur (1,2).

Du fait de la faiblesse de son vol, le Verdier d'Europe subit une pression de chasse notable par les oiseleurs, de même que, d'ailleurs, d'autres espèces de Fringilles comme le Chardonneret élégant, le Serin cini et la Linotte mélodieuse.

3.1.4.21. – Les espèces indifférentes

Les espèces rares, seulement signalées d'une station parmi les 12 que nous avons prospectées, sont au nombre de 9, et présentent des valeurs moyennes de F comprises entre 0,1 % et 1,0 % (Tab. 13). Il s'agit du Pic épeichette (0,1 %), du Merle bleu(0,1 %), du Cochevis de thélka(0,2 %), du Moineau friquet(0,3 %), du Pipit des arbres(0,5 %), du Loriot d'Europe (0,8 %), du Rollier d'Europe(0,8 %), du Choucas des tours (0,8 %) et du Locustelle luscinioïde(1,0 %). Les espèces assez rares sont celles mentionnées dans 2 stations sur les 12 prospectées. Les valeurs maximales de leurs fréquences centésimales
sont de 0,3 % pour le Roitelet triple-bandeau, de 0,6 % pour l’Alouette pipolette, 1,8 % pour le Traquet tarier et 2,3 % pour la Fauvette à lunettes. Parmi ces espèces, le Merle bleu *Monticola solitarius* n’a fait l’objet que d’une observation accidentelle en juin 2004 à Boufarik, où il était attiré par une source d’eau à l’intérieur de terres agricoles. Par ailleurs le Moineau friquet *Passer montanus* a été observé perché sur des roseaux *Phragmites sp* en bordure du lac de Réghaïa. Le cochevis de thékla *Galerida theklae* n’a été observé que dans des terres rocailleuses près de maquis d’oliviers près de Blida. Quatre individus seulement de Choucas des tours ont été observés, près de l’Oued Guerrouaou à la sortie de Blida, probablement de passage et venus des montagnes avoisinantes. Parmi les espèces sédentaires considérées comme rares ou même en voie d’extinction dans la région d’étude, on trouve le Chardonneret élégant. Il n’a été vu, de façon accidentelle que dans quatre stations. Chez lui, la valeur de F atteint un maximum à Blida (1,9 %). Les quelques individus observés dans la plaine de la Mitidja sont généralement de passage.

3.1.5. – Etude comparative de trois stations représentatives de la Mitidja

Tableau 14 – Valeurs des échantillonnages fréquentiels progressifs (E.F.P.) effectués en décembre 2006 dans les stations de Rouiba, de Boufarik et de Bourkika

S : Richesse totale ; H' : Indice de diversité de Shannon-Weaver ; E : Indice d’équirépartition ; A.R. (%) : Abondance relative

Les valeurs de la richesse totale S sont variables. Si elles sont comparables à Boufarik (23 espèces) et à Rouiba (26 espèces), elle est nettement plus élevée à Bourkika (33 espèces). Par ailleurs l’indice de diversité de Shannon-Weaver appliqué aux espèces avies est de 2,9 bits dans la station orientale, mais atteint 3,5 bits dans la station médiane et 3,8 bits dans la station occidentale qui sont assez comparables sous ce rapport (Tab.14). Comme nous l’avons déjà mentionné, la richesse totale apparaît plus faible dans la zone industrielle de Rouiba à cause de la trop grande pression anthropique et de la pollution. Mais cela reste à prouver par une analyse fine et statistique. L’indice d’équirépartition est comparable dans les trois stations, allant de 0,6 à Rouiba à 0,8 aussi bien à Boufarik qu’à Bourkika (Tab.14). On peut émettre comme explication dans ce cas précis que l’augmentation de la pression anthropique industrielle tend à réduire le nombre
des espèces aviaires et à favoriser certaines d’entre elles qui deviennent abondantes, et en effet la valeur de $E = 0,6$ dans la station de Rouiba atteste d’une moindre tendance vers l’équilibre entre les effectifs des espèces présentes en comparaison des stations de Boufarik et de Bourkika qui semblent beaucoup moins perturbées.

Afin de juger de la similitude des 3 stations, il est possible d’utiliser le quotient de similarité. Ce dernier est calculé dans le but de comparer les séries d’E.F.P. réalisés entre le 27 novembre et le 27 décembre 2006 dans les trois stations de la Mitidja. Les résultats sont donnés dans le tableau 15.

<table>
<thead>
<tr>
<th></th>
<th>Rouiba</th>
<th>Boufarik</th>
<th>Bourkika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouiba</td>
<td>100</td>
<td>65,3</td>
<td>57,62</td>
</tr>
<tr>
<td>Boufarik</td>
<td>100</td>
<td>57,14</td>
<td></td>
</tr>
<tr>
<td>Bourkika</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Les valeurs du coefficient de Sorensen sont données par ordre décroissant sous forme d’un dendrogramme (Fig. 22). La plus forte valeur du coefficient de similarité est signalée entre Rouiba et Boufarik (65,3 %), avec 16 espèces en commun (Tab. 14), ce qui peut s’expliquer sans doute par le fait qu’il y a une certaine ressemblance entre ces deux milieux. D’autre part, le coefficient de similarité entre Bourkika et Boufarik est de 57,1 %, avec 16 espèces en commun et de 57,6 % entre Bourkika et Rouiba, avec 17 espèces en commun. Il faut ajouter que l’environnement de la station occidentale est plus hétérogène par rapport à ceux des stations des parties médiane et orientale de la Mitidja (Tab. 3, 6).

De ce fait Bourkika est un milieu plus ouvert et plus aride par rapport à Boufarik et à Rouiba. Certaines espèces plus exigeantes de ce point de vue, comme *Pterocles orientalis* (1,0 %), *Melanocorypha calandra* (0,4 %), *Calandrella rufescens* (0,7 %) préfèrent ce type de milieu. On

Fig. 22 – Dendrogramme de la similarité entre le peuplement avien des trois stations de la Mitidja

peut leur adjoindre quelques espèces migratrices précoces comme *Oenanthe oenanthe* (2,0 %) et *Upupa epops* (0,4 %). Il est à noter que les 13 espèces communes aux trois stations comptent10 sédentaires, soit un pourcentage de 76,9 % du total en commun. Parmi elles, on peut citer *Columba livia* (45,3 %), *Serinus serinus* (20,6 %),
Passer domesticus x P. hispaniolensis (18,1 %) et Turdus merula (8,7 %). Les trois espèces restantes (Motacilla alba 7,3 %, Turdus philomelos 6,0 % et Erithacus rubecula 2,7 %) sont migratrices.

3.1.6. – Diagnostic du peuplement avien par l’analyse factorielle des correspondances

Nous avons utilisé dans cette partie, deux types d’analyse dont l’une est qualitative et l’autre quantitative. L’analyse qualitative fait intervenir les différentes espèces aviennes contactées au moment des échantillonnages y compris les espèces à grands cantons. Par ailleurs l’analyse factorielle des correspondances quantitative n’est appliquée que pour les espèces à petits cantons comme les passereaux en général.

3.1.6.1. - Analyse qualitative appliquée au peuplement avien de la Mitidja

Les axes pris en considération sont les axes 1 et 2. La somme de leurs contributions à l’inertie totale est de 30,3 %. Elle est de l’ordre de 17,4 % pour la formation de l’axe 1 et 12,9 % pour la formation de l’axe 2. Normalement, il faudrait faire intervenir l’axe 3 (12,1%). L’essentiel des informations se trouvent dans les plans des axes 1 et 2 et 1 et 3.

Construction de l’axe 1 : La station qui intervient le plus pour la formation de l’axe 1 est Réghaïa avec 76,2 %, suivie par Blida (BLI) avec 7,4 %. Les autres stations participent plus faiblement dans l’élaboration de l’axe 1. Pour la constitution de l’axe 2, les stations qui interviennent le plus sont Blida (BLI) avec 34,7 %, Bourrika (BKI) avec 19,9 %, Meftah (MEF) avec 17,5 % et Ain Naadja (AIN) avec 11,6 %. Les autres stations contribuent très faiblement dans la formation cet axe.

En ce qui concerne les espèces aviennes, celles qui participent le plus, chacune avec 4,7 % dans la construction de l’axe 1 sont Anas platyrhynchos (004), Phoenicopterus ruber-roseus (005), Aythya fuligula (006), Fulica atra (023), Larus ridibundus (025), Larus audouinii (028), Locustelle luscinoides (086), Passer montanus (106) et Sturnus unicolor (113). Celles qui interviennent le plus dans la formation de l’axe 2 sont entre autres Alauda arvensis (047) (4,3 %), Calendrella rufescens (051) (4,3 %) et Falco tinnunculus (017) (4,2 %).

Le groupement A rassemble les espèces omniprésentes telles que Turdus merula (073) et Passer domesticus x P. hispaniolensis (105). Cependant 3 espèces sont pratiquement omniprésentes dans les différentes stations de la région d’étude hormis dans une seule. Ce sont Parus caeruleus (094) absent à Meftah, Serinus serinus (108) non observée à Blida et Carduelis chloris (111) non contactée à Chebli). Par ailleurs les espèces présentes partout sauf dans 2 stations sont au nombre de 6 : ce sont Columba livia (030), C. palumbus (031), Streptopelia turtur (033), S. senegalensis (034), Pycnonotus barbatus (063) et Sylvia atricapila (081). Les espèces qui ne sont vues qu’au marais de Réghaïa se retrouvent dans le groupe B. Ce sont des espèces des plans d’eau comme Anas platyrhynchos (004), Phoenicopterus ruber-roseus (005), Aythya fuligula (006), Circus aeruginosus (011), Fulica atra (023), Larus ridibundus (025), L. fuscus (026),
L. audouinii (028) et Locustelle luscinoides (086). Le groupement C concerne les espèces notées seulement à Rouiba. Ce sont Hieraaetus fasciatus (008) et Scolopax rusticola (024). Le groupement D rassemble les espèces qui ne sont mentionnées qu’à Meftah telles que Circus cyaneus (012), Coracias garrulus (041) et Oriolus oriolus (096). En E il n’y a qu’une espèce vue à Oued Smar. C’est Motacilla flava (058). Quant à F il regroupe les espèces vues uniquement à Baraki comme Nycticorax nycticorax (002), Ficedula hypoleuca (092) et Emberiza cirlus (103). Le groupement G concerne que les espèces observées à Ain Naadja comme Falco naumanni (018), Streptopelia roseo-grisea (036) et Cuculus canorus (037). En H ce sont les oiseaux vus à Boufarik. Ce sont des espèces vivant en général en montagne comme Aquila chrysaetos (007), Buteo rufinus (009), Dendrocygna bicolor (040) et Monticola solitarius (074). Le groupement I concerne surtout les espèces rencontrées qu’à Blida. Ce sont des espèces rares ou des migrateurs de passages comme Milvus migrans (015), Galerida theklae (048), Anthus trivialis (059), Sylvia cantillans (084), Phylloscopus trochilus (089) et Corvus monedula (101). En fin le groupement J concerne les espèces rares notées à Bourrika comme Buteo buteo (010), Milvus milvus (014), Pterocles orientalis (029) et Oenanthe oenanthe (066) (Fig. 23).

Axe 3 : Pour la construction de l’axe 3, les stations qui interviennent le plus sont Meftah (MEF) avec 55,7 %, Bourrika (BKI) avec 17,6 %, Réghaïa (REG) avec 10,0 % et Ain Naadja (AIN) avec 8,1 %. Les autres stations participent très faiblement dans la formation de l’axe 3. En ce qui concerne des espèces avienennes, celles qui participent le plus dans la construction de l’axe 3 sont entre autres Anthus sp. (061) avec 8,1 % les trois espèces suivantes avec 7,7 % chacune Circus cyaneus (012), Coracias garrulus (041) et Oriolus oriolus (096). Le groupement A ne réunit que les espèces omniprésentes comme Turdus merula (073) et Passer domesticus x P. hispaniolensis
Fig. 23 – Carte factorielle (Axe 1-2) des espèces composant le peuplement avien de la Mitidja (Analyse qualitative)

(105). Il faut ajouter que 3 espèces sont présentes dans presque toutes les stationnnaux d’une seule. Ce sont Parus caeruleus (094), Serinus serinus (108) et Carduelis chloris (111). Les espèces vues uniquement à Réghaïa sont rassemblées dans le groupe B. Ce sont des espèces qui fréquentent les marais comme Anas platyrhynchos (004), Phoenicopterus ruber-roseus (005), Aythya fuligula (006), Circus aeruginosus (011), Fulica atra (023) et Locustella luscinoides (086). Le groupement C réunit les espèces notées à Rouiba, soit Hieraaetus fasciatus (008) et Scolopax rusticola (024). Au sein du groupement D il n’y a que les espèces observées à Meflah telles que Circus cyaneus (012), Coracias garrulus (041) et Oriolus oriolus (096). En E les espèces rassemblées sont celles qui sont signalées à Ain Naadja comme Falco naumanni (018), Streptopelia roseo-grisea (036) et Cuculus canorus (037). Le groupement F ne concerne que les oiseaux vus à Boufarik. Ce sont Aquila chrysaetos (007), Buteo rufinus (009), Dendrocoptes minor (044) et Monticola solitarius (074). Le groupement G renferme les
espèces mentionnées à Blida telles que *Milvus migans* (015), *Galerida theklae* (048), *Anthus trivialis* (059), *Sylvia cantillans* (084), *Phylloscopus trochilus* (089) et *Corvus monedula* (101). Au sein du groupement H il y a des espèces rares, remarquées à Bourkika comme *Buteo buteo* (010), *Milvus milvus* (014), *Pterocles orientalis* (029) et *Oenanthe oenanthe* (066). Enfin le groupement I rassemble les espèces vues à la fois à Réghaïa et à Bourkika. Ce sont *Columba oenas* (032), *Turdus viscivorus* (072), *Sylvia conspicillata* (083) et *Cettia cetti* (085) (Fig. 24) (Annexe 3).

3.1.6.2. – Analyse quantitative appliquée au peuplement avien de la Mitidja

Cette analyse ne concerne que les espèces à petits cantons avec leurs valeurs moyennes de contacts obtenus par la méthode des échantillonnages fréquentiels progressifs.

Les axes 1 et 2 pris en considération présentent une somme de leurs contributions à l’inertie totale égale à 38,5 %, soit 21,5 % pour la formation de l’axe 1 et 17,0 % pour la construction de l’axe 2. En principe, il faudrait faire intervenir l’axe 3 (15,4 %). De ce fait, dans les plans des axes 1 et 2 d’une part et 1 et 3 d’autre part, se retrouve l’essentiel des informations de cette analyse.
Construction de l’axe 1 : La station qui participe le plus à la formation de l’axe 1 est Baraki (BARA) avec 53,9 %, suivie par Meftah (MEF) avec 18,2 % et Rouiba (ROU) avec 14,0 %. Le reste des stations contribuent plus faiblement dans la formation de cet axe. Pour la constitution de l’axe 2, les stations qui interviennent le plus sont Meftah (MEF) avec 28,7 %, Cherarba (CHE) avec 19,2 %, Réghaïa (REG) avec 16,6 %, Baraki (BAR) avec 15,8 % et Ain Naadjia (AIN) avec 11,4 %. Les autres stations interviennent très faiblement dans la formation de l’axe 2.

Pour ce qui est des espèces d’oiseaux, celles qui participent le plus à la formation de l’axe 1 sont Streptopelia turtur (009) avec 40,7 %, Columba livia (006) avec 12,3 %, Columba palumbus (007) avec 6,7 % et Serinus serinus (077) avec 6,7 %. Celles qui contribuent le plus à la formation de l’axe 2 sont entre autres Merops apiaster (015) avec 22,2 %, Psittacula krameri (013) avec 20,1 %, Motacilla alba (026) avec 15,4 % et Streptopelia turtur (009) avec 7,5 %.
Chapitre III – Résultats sur l’avifaune de la Mitidja

La représentation graphique des axes 1 et 2 montre que les 12 stations se retrouvent dans des quadrants différents. Chebli (CHB), Ain Naadja (AIN), Britouta (BIR) et Boufarik (BFA) sont présentes dans le quadrant I (Fig. 25). Dans le quadrant II on ne retrouve que 2 stations celles de Baraki (BAR) et d’Oued Smar (OSM). Par ailleurs dans le quadrant III il y a uniquement Meftah (MEF). Un nombre de 4 stations se localise dans le quadrant IV. Ce sont Rouiba (ROU), Bourkika (BKI), Cherarba (CHB) et Réghaïa (REG). Cependant Blida (BLI) se place entre les quadrants I et II. On explique la répartition des stations entre les quatre quadrants par les différences de composition des différents milieux en espèces.

La distribution spatiale des espèces avies dans le plan factoriel (1-2) permet de rassembler les espèces en 7 nuages de points. Dans chaque nuage les espèces se regroupent tout autour d’une station. Celles qui se rapprochent le plus de la station sont celles qui présentent des effectifs les plus importants. Par ailleurs, les espèces les plus éloignées sont rares ou à faibles effectifs. Les groupes A et B sont présents dans le quadrant I. Le point A voisine avec Chebli, et représente une seule espèce, *Psittacula krameri* (013), qui présente ici des effectifs plus importants que dans les autres stations. Le nuage de points B se situe près de Boufarik, et est formé par *Serinus serinus* (077), espèce à effectif élevé, *Dendrocopos minor* (017) et *Monticola solitarius* (044), ces deux dernières espèces rares et seulement observées à Boufarik. Dans le deuxième quadrant on observe deux autres groupes, C et D. Le premier est formé de 6 espèces qui gravitent autour de Blida, et parmi lesquelles *Fringilla coelebs* (076) est bien représentée en effectifs. Les 5 autres espèces sont rares et seulement signalées à Blida. Ce sont *Galerida theklae* (021), *Anthus trivialis* (029), *Sylvia cantillans* (054), *Phylloscopus trochilus* (059) et *Corvus monedula* (70). Le groupe D se rapproche de Baraki, et est formé de *Streptopelia turtur* (009), bien représenté et d’espèces rares dans la station, comme *Gallinula chloropus* (003), *Ficedula hypoleuca* (062) et *Emberiza cirlus* (072). Dans le quadrant III, il n’y a que le groupement E. Il est constitué de 3 espèces observées à Meftah, avec *Alectoris barbara* (002), bien représentée en nombre, *Coracias garrulus* (014) et *Oriolus oriolus* (066) uniquement observés dans cette localité. Enfin le quadrant IV renferme les groupes F et G. Le groupe F se rapproche de Bourkika par certaines espèces comme *Alauda arvensis* (020), et comprend aussi des espèces rares comme *Pterocles orientalis* (005) et *Oenanthe oenanthe* (036). Le groupe G est constitué d’espèces qui se retrouvent autour de Rouiba où *Columba livia* (006) domine tandis que *Scolopax rusticola* (004) est rare (Fig. 25).

Axe 3 : les stations qui participent le plus à la construction de l’axe 3 sont Chebli (CHE) avec 46,3 %, Meftah (MEF) avec 19,3 % et Rouiba (ROU) avec 9,2 %. Le reste des stations contribuent très faiblement dans la formation de cet axe. En ce qui concerne les espèces d’oiseaux, celles qui interviennent le plus sont *Psittacula krameri* (50,1 %), *Columba livia* (006) et *Merops apiaster* (006).

Dans la représentation graphique des axes 1 et 2, les stations d’étude sont réparties dans des quadrants différents. En effet, Chebli (CHB), Ain Naadja (AIN) et Réghaïa (REG) se localisent dans le quadrant I (Fig. 26). Les stations de Meftah (MEF) et d’Oued Smar (OSM) se situent dans le quadrant II. Dans le quadrant III on retrouve Baraki (BAR) et Blida (BLI). Les 5 stations qui restent, Rouiba (ROU), Boufarik (BFA), Cherarba (CHB), Britouta (BIR) et Bourkika (BKI) sont placées dans le quadrant IV. De ce fait, la distribution
des stations entre les quatre quadrants s’explique par les dissemblances de composition en espèces d’oiseaux des différents milieux (Fig. 26).

Dans le plan factoriel (1-3), la distribution spatiale des espèces d’oiseaux permet de distinguer 6 nuages de points.

Dans le quadrant I il y a les groupes A et B. En effet A qui est proche de Chebli, ne renferme que *Psittacula krameri* (013) qui est mieux représentée en effectifs par rapport aux autres stations. Le nuage de points B se situe près de Ain Naadja, constitué par *Hippolais pallida* (048), espèce à effectif élevé, *Certhia brachydactyla* (065) et *Cuculus canorus* (012). Les deux dernières espèces citées sont rares et mentionnées qu’à Ain Naadja. Dans le quadrant II on ne trouve que le nuage de points C, qui est constitué de 3 espèces gravitant autour de Meftah, et où *Alectoris barbara* (002) est bien représentée en nombre. Les 2 autres espèces présentes, *Coracias garrulus* (014) et *Oriolus oriolus* (066) sont rares et ne sont mentionnées qu’à Meftah. Le quadrant III contient les groupements D et E. En D on ne trouve qu’une seule espèce, *Streptopelia turtur* (009), qui se rapproche de Baraki, où elle est bien représentée en effectifs.

Le nuage de points E, est constitué de 6 espèces qui gravitent autour de Blida où *Fringilla coelebs* (076) est commun. Les autres espèces, *Galerida theklae* (021), *Anthus trivialis* (029), *Sylvia*
Fig. 25 – Carte factorielle (Axe 1-2) des espèces composant le peuplement avien de la Mitidja (Analyse quantitative)
Les espèces introduites ou en pleine expansion

Parmi les espèces d’oiseaux introduits ou en expansion, quatre seront étudiées particulièrement ici : Psittacula krameri, Streptopelia decaocto, Columba palumbus et
Bubulcus ibis.

3.2.1. – La Perruche à collier Psittacula krameri

On retrouvera ici l’estimation et le suivi des populations de la Perruche à collier, ainsi que sa distribution géographique générale. Une attention particulière sera réservée à la progression de ses effectifs dans la région, à son activité par tranches horaires et selon les mois, et enfin à son comportement trophique. On peut noter ici que, bien que cette espèce soit bien reconnaissable, sa vitesse de vol élevée (entre 120 et 160 km/heure) peut rendre son identification peu aisée à une personne qui ne la connaît pas.

3.2.1.1. – Origine des Perruches à collier présentes dans la région d’étude

Selon les résultats d’une enquête chez le personnel et les riverains du Jardin d’Essai du Hamma (Alger), 6 à 8 perruches à collier Psittacula krameri adultes seraient échappées entre 1988 et 1990 d’une volière demeurée accidentellement ouverte. Ces Perruches à collier se sont maintenues à l’état sauvage dans le Jardin d’Essai et dans ses environs immédiats pendant plusieurs années, recevant sans doute de temps en temps le renfort d’individus échappés de cage.

Du fait que la Perruche à collier se reproduit dans l’Algérois et accroît ses effectifs, on doit la considérer désormais comme faisant partie de l’avifaune algérienne. Nous n’avons pas pu savoir exactement à quelles sous-espèces appartiennent les oiseaux échappés. Il est vraisemblable que certains, peut être la majorité, aient appartenu à la sous-espèce nominative Psittacula krameri krameri (Scopoli, 1769), qui occupe la ceinture sahélienne depuis la Sénégal jusqu’au sud du Soudan. Elle est, de ce fait, largement représentée chez les marchands d’oiseaux d’Alger. Une seconde hypothèse, serait que les perruches provenant des volières aient fait partie de la sous-espèce parvirostris (Souancé, 1856), dont l’aire de répartition va du Soudan jusqu’à la Mer Rouge. Il reste aussi la possibilité qu’il y eût parmi ces oiseaux des individus d’une des deux sous-espèces asiatiques P. k. manillensis (Bechstein, 1800), d’Extrême-Orient, ou P. k. borealis (Neumann, 1915), répandues depuis Bagdad, en Irak, jusqu’en Thaïlande, ou encore des hybrides entre les formes africaines et asiatiques. En effet, nous avons observé plusieurs fois des individus présentant le bec entièrement rouge caractéristique des perruches asiatiques (Fig. 27a, b et c).

3.2.1.2. – Effectifs, suivi des populations, distribution dans la région d’étude et ailleurs en Algérie.

Ce chapitre comprend un premier volet sur la présence de la Perruche à collier dans l’Algérois, et un deuxième sur sa présence dans d’autres régions d’Algérie.

3.2.1.2.1. – Observations dans la région d’Alger et la plaine de la Mitidja

Fig. 27 – Spécimens de quelques Perruche à collier (Collection du M.N.H.N de Paris).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alger et ses environs Télémly (Mont Riant)</td>
<td>XII (2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>V (6)</td>
<td>18</td>
<td>V (5)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INA (El Harrach)</td>
<td>(2)</td>
<td>5</td>
<td>XII (7)</td>
<td>I (3)</td>
<td>(3)</td>
<td>III (1)</td>
<td>XI (12)</td>
<td>12</td>
<td>X (20)</td>
<td>12</td>
<td>II (10)</td>
</tr>
<tr>
<td>Jardin du Hamma</td>
<td>*</td>
<td>*</td>
<td>(10)</td>
<td>*</td>
<td>III (10)</td>
<td>7</td>
<td>XI (12)</td>
<td>10</td>
<td>IV (4)</td>
<td>7</td>
<td>III (8)</td>
</tr>
<tr>
<td>Aïn Taya</td>
<td>-</td>
<td>VII (1)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X-XI (100)</td>
<td>26</td>
<td>II (12)</td>
</tr>
<tr>
<td>Musée de Bardo (Palmiers)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I (5)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Tixeraine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>IX (2)</td>
<td>*</td>
<td>12</td>
<td>III (3)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Oued Smar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>XII (9)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cinq Maisons</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>IX (1)</td>
<td>*</td>
</tr>
<tr>
<td>Rouiba (Filaos + Néfliers)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>IV (2)</td>
<td>*</td>
</tr>
<tr>
<td>Bab El Oued (Djebel Koukou)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>III (100)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Réghaïa (Marais)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11 III (1)</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Dar El Béïda (Pins, Mûrier)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11 V (4)</td>
<td>27</td>
<td>IX (4)</td>
</tr>
<tr>
<td>Hydra (Jardins)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V (10)</td>
<td>11</td>
<td>III (8)</td>
</tr>
<tr>
<td>Baïnem (forêt)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V (100)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Beaulieu (Jardin)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31 V (1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chebli (Haouch Fenar)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5 X (1)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bouchaoui (forêt de Pin)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>XI (10)</td>
<td>*</td>
</tr>
<tr>
<td>El Biar (Djennan El Mithak)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>XI (5)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ben Aknoun (parc zoologique)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>IX (100)</td>
<td>13</td>
</tr>
<tr>
<td>Baba Ali (Maquis)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I (8)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bouzaréah (Eucalytées)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>II (5)</td>
<td>*</td>
</tr>
<tr>
<td>Béni Messous (forêt)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>III (2)</td>
<td>*</td>
</tr>
<tr>
<td>Staoueli</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>II (5)</td>
<td>*</td>
</tr>
</tbody>
</table>
Anassers & - & - & - & - & - & - & - & 11 II (2) & * & * \\
Belfort & - & - & - & - & - & - & - & 18 II (4) & * & * \\
Zéralda (Casuarina) & - & - & - & - & - & - & - & 15 IV (2) & - & - \\
Kouba & - & - & - & - & - & - & - & 16 XII (3) & * & * \\
Ain Naadja (Vieux Oliviers) & - & - & - & - & - & - & - & 18 V (1) & * & * \\
Meftah (Haouch El Makhfi) & - & - & - & - & - & - & - & VII (7) & 10 IV (8) & * & * \\
Hamer El Ain (Filaos, Eucalyptus) & - & - & - & - & - & - & - & - & 20 V (1) & * & * \\
Hadjout & - & - & - & - & - & - & - & - & 1 VIII (2 à 3) & * & * \\
Bourkika (Vignoble) & - & - & - & - & - & - & - & 22 VIII (1) & 15 IX (3) & 9 XI (4) & * & * \\
Blida (Jardin public) & - & - & - & - & - & - & - & - & 3 VII (2) & * & * \\
Tizi Ouzou Yakouren (foêt de chêne) & - & - & - & - & - & ? I (1) & - & - & 5 VIII (2) & 7 VIII (3) & * & * \\
Vallée de Sébaou & - & - & - & - & - & - & - & 3 VII (2) & * & * \\
Mila (Barrage) & - & - & - & - & - & - & - & Eté (2) & - & - & VIII (14) & IX (2) \\
Biskra (Jardin Landon) & - & - & - & - & - & - & - & - & IV (1) & * & * \\
Médéa El Hamdania (Gorges de Chiffa) & - & - & - & - & - & - & - & - & 8 III (8) & * & *

* : présence ; - Absence ; () : valeurs des effectifs maxima.

Plus loin, à Maâmria près de Rouiba, deux individus se perchent le 15 avril 2002 sur les filao à proximité d’un verger de néfliers. Le 27 décembre de la même année, à 8h35, une bande de 9 perruches passe au vol au-dessus de la gare ferroviaire d’Oued Smar, se
dirigeant à l’est-nord-est vers Dar El Beida.

Le 11 mars 2003 à 10h10, un individu isolé passe au vol en criant au dessus du maquis du marais de Réghaïa, allant vers l’Ouest-Sud-Ouest. A Dar El Beida, entre 18 et 19 heures le 11 mai de la même année, quatre perruches se perchent dans des mûriers noirs où elles s’alimentent. La présence de la Perruche à collier est confirmée à Haouch Fenar près de Chebli par les habitants et nos propres observations du 5 octobre 2003 au 19 janvier 2006.

Fig. 28 – Répartition de Psittacula krameri dans le littoral algérois et en Mitidja

En janvier 2004, un groupe de huit individus, probablement venu de Saoula, est signalé par la population locale dans le maquis de Baba Ali. A Zéralda, deux Perruches à collier sont observées le 15 avril de la même année vers 15 heures, faisant leur toilette dans des filaos. On peut noter ici que la progression de cet oiseau vers le Sud et l’Ouest de la capitale semble moins marquée que vers l’Est (Fig. 28).

A Ain Naadja un individu est signalé le 18 mai 2005, perché sur un vieil olivier. Quelques mois plus tard, le 18 décembre peu avant 17 heures, huit Perruches à coller mangent des dattes de palmier des canaries près du cimetière de Bach Djarah, puis s’envolent en direction d’un bosquet d’eucalyptus situé à 7 km vers l’ouest de la Mitidja. Pendant l’été 2005 plus de 100 perruches ont été vues à Haouch El Makhfi près de Méftah, posées sur les casuarinas.

Les signalisations de la perruche à collier sont plus nombreuses au cours de l’année 2006. Dès le 20 janvier 15 individus sont observés à Sidi Moussa près de l’Oued Benicha, le 20 avril un individu se perche sur un filaol à Ahmer El Ain le 20 avril. Dans un jardin privé de Hadjout, dans la partie occidentale de la Mitidja, deux ou trois individus sont surpris à plusieurs reprises perchés sur les pins le 1er août. Près de Bourkika, dans la même région, trois perruches sont vues dans des vignobles le 15 août. Enfin, quatre
perruches sont vues le 9 novembre dans un jardin public de Blida. Le 25 avril 2007 à 10 h 25’, des cris de Perruche à collier se font entendre, venant de brise-vents à Casuarina torulosa au sud de Boufarik.

D’une manière générale, les manifestations de la Perruche à collier interviennent plutôt le matin, vers 7 h au printemps et 8 h 30’ en hiver. De plus, les perruches qui arrivent au dessus de Hassen Badi ou Belfort s’arrêtent et perchent sur un eucalyptus ou un frêne avant de reprendre leur vol vers le Sud.

3.2.1.2.2. – Autres observations en dehors de la région d’étude

La Perruche à collier n’a pas été observée à l’état sauvage que dans la région d’Alger et ses environs immédiats. En effet, dès 2001 elle a été observée aux alentours de Tizi Ouzou (36° 43’ N., 4° 03’ E.), et plus précisément dans une chênaie mixte près de Yakouren, où un individu est capturé. Dans la même région, en 2004, soit trois ans plus tard, deux individus survolent la vallée de l’oued Sébaou le 3 juillet à 18 heures (Tab. 16). Pendant l’été 2002, les habitants des environs de Mila (36° 16’ N., 6° 12’ E) sont intrigués par la présence de deux Perruches à collier qu’ils voyaient pour la première fois. Trois ans plus tard, pendant l’été 2005, c’est une bande de 14 individus qui est observée au même endroit. L’installation de la Perruche à collier à Mila semble avoir été favorisée par la mise en service récente d’un barrage. A 400 km au sud-est d’Alger et à la limite du flanc méridional de l’Atlas saharien, une Perruche à collier est observée le 15 avril dans le jardin de Landon à Biskra. S’agit-il d’un individu échappé d’une volière locale ou provenant de la population de l’Algérois ? Nous ne pouvons en décider pour le moment. Il est cependant plus vraisemblable que les huit perruches vues le 8 mars 2005 à 15 h dans les gorges de la Chiffa (36° 21’ N., 2° 45’ E.) soient issues de la population d’Alger (Tab. 16). On peut remarquer ici le peu d’amplitude des déplacements de l’espèce autour d’Alger ainsi que la lenteur de sa colonisation de l’espace dans l’Algérois. La Perruche à collier n’a pas encore été observée ni dans le Sud du Sahara, ni à Tamanrasset, ni dans l’Oranais, au nord-ouest. Dans le Nord-Est au contraire, elle a été observée dans la ville d’Annaba (36° 47’ N., 7° 36’ E.) (SAMRAOUI, com. pers.), mais nous nous sommes pas encore renseignés sur le nombre exact d’individus présents dans cette région (Fig. 29).

3.2.1.3. - Progression des effectifs de la Perruche à collier dans la région d’étude

A l’origine, entre 1988 et 1990, seulement six à huit Perruches à collier échappées des volières se sont maintenues à l’état sauvage dans le Jardin d’essai et dans ses environs immédiats. Pour s’abriter, elles ont profité des cavités offertes par plus de 100 platanes formant une allée nord-sud, du zoo jusqu’aux Arcades, ainsi que par de grands arbres morts comme Chorisia speciosa, de Washingtonia robusta et d’Eucalyptus sp. Les premiers signes de reproduction sont observés dès les premières années qui ont suivi leur évasion. De 1988 à 1990 les vieux individus restent sédentaires dans le Jardin d’essai du Hamma ou dans ses environs immédiats. Au contraire, au cours des années
suites, les jeunes s'éloignent davantage du centre d'Alger vers la périphérie (Fig. 28), et on remarque une augmentation des effectifs dans les différentes localités de la région d'Alger où l'espèce s'est établie (Tab. 16). En mars 2004, dans les limites du Jardin d'Essai du Hamma, la population de Perruche à collier atteint le nombre d'une trentaine individus, en progression constante depuis 1990. Le passage de deux individus au dessus d'El Harrach et de Télemly au cours de cette même année peut être interprété comme un déplacement de prospection à la recherche de nouveaux sites d'alimentation et de reproduction. Entre 1997 et 2000, la Perruche à collier continue à se reproduire dans le Jardin d'essai du Hamma et s'installe de proche en proche dans les parcs publics avoisinants. Cette expansion se fait certainement moins à la recherche de ressources trophiques que de calme et de nouveaux sites de nids. En effet les stocks alimentaires en baies, en graines et en fleurs churnées du Jardin d'essai sont suffisants pour nourrir tout au long de l'année un nombre de perruches bien supérieur à trente, et de plus l'année 1996 coïncide avec l'augmentation des activités de dérangement dans le parc à la suite de sa ré-ouverture au public.

Fig. 29 – Répartition de Psittacula krameri en Algérie

Ainsi cinq perruches sont mentionnées en janvier 2000 dans le jardin du musée du

L’évolution numérique des effectifs de la Perruche à collier depuis 1996 jusqu’au 2006 est présenté dans le tableau 17.

Tableau 17 – Effectifs cumulés et abondance relative de Psittacula krameri dans la région d’Alger (Littoral, Sahel et Mitidja) entre 1996 et 2006

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectifs</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>27</td>
<td>29</td>
<td>46</td>
<td>283</td>
<td>342</td>
<td>376</td>
<td>422</td>
</tr>
<tr>
<td>AR (%)</td>
<td>0,95</td>
<td>2,37</td>
<td>4,74</td>
<td>4,74</td>
<td>6,4</td>
<td>6,87</td>
<td>10,90</td>
<td>67,06</td>
<td>81,04</td>
<td>89,10</td>
<td>100</td>
</tr>
</tbody>
</table>

AR : Abondance relative

Entre 1996 et 2002 le nombre de contacts visuels ou auditifs de Perruche à collier augmentent assez légèrement (Fig. 30). Ils sont multipliés pratiquement par 12 passant de 4 à 46. La population de 2002 correspond à 10,9 % par rapport à la population recensée en 2006 (Tab. 17).
Etude de l’Avifaune de la Mitidja

![Graphique des effectifs cumulés des populations de Psittacula krameri entre 1996 et 2006](image)

Fig. 30 - Effectifs cumulés des populations de Psittacula krameri entre 1996 et 2006

En 2003 les effectifs totaux de la Perruche à collier dans la Mitidja sont estimés à 283 individus soit 67,1 % par rapport au total des effectifs cumulés en 2006 (Fig. 30). En 2004, ils passent à 342 individus (81,0 %), en 2005 à 376 (89,1 %) et en 2006 à 422 individus.

Deux explications peuvent être données pour expliquer cet important accroissement. La première s’appuie sur les conditions climatiques qui sont devenues plus favorables à la suite des changements pluviométriques notables survenus de 2002 à 2003. L’année 2002 fut une année de grande sécheresse, certainement la plus longue par depuis des décennies, qui s’est prolongée pendant huit mois de février à octobre. Au contraire, 2003 apparaît comme une année assez pluvieuse, totalisant 736 mm de précipitations sur une période humide de presque sept mois, allant de la mi-octobre jusqu’au début de mai de l’année suivante (Fig. 3). La deuxième explication plausible s’appuie sur la faible masse d’informations recueillies auprès des observateurs par manque d’expérience avant 2002. En effet, la Perruche à collier est une espèce farouche qui ne se laisse pas facilement approcher et se perche le plus souvent très haut sur les arbres. Compte tenu de son homochromie avec la couronne foliaire et malgré ses cris l’estimation de ses effectifs reste difficile.

Pour mieux expliciter l’évolution numérique de la Perruche à collier dans la Mitidja, nous indiquons ici le total de contacts auditifs et visuels que nous en avons fait par tranche de temps de 5 années (Tab. 18). Rappelons ici que, observation de cet oiseau n’a été faite à Alger en-dehors du Jardin d’essai du Hamma, ni naturellement dans les environs de cette ville.

<table>
<thead>
<tr>
<th>Périodes</th>
<th>1 ind.</th>
<th>2-4 ind.</th>
<th>5-10 ind.</th>
<th>11 – 20 ind.</th>
<th>21-100 ind.</th>
<th>Totaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990 – 1994</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995 – 1999</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2000 – 2004</td>
<td>199</td>
<td>106</td>
<td>24</td>
<td>4</td>
<td>5</td>
<td>338</td>
</tr>
<tr>
<td>2005 – 2006</td>
<td>160</td>
<td>166</td>
<td>109</td>
<td>79</td>
<td>1</td>
<td>515</td>
</tr>
<tr>
<td>Min. contact.</td>
<td>361</td>
<td>554</td>
<td>675</td>
<td>913</td>
<td>27</td>
<td>2530</td>
</tr>
<tr>
<td>Max. contact.</td>
<td>361</td>
<td>1108</td>
<td>1350</td>
<td>1660</td>
<td>600</td>
<td>5079</td>
</tr>
</tbody>
</table>

Min. : Minimum ; Max. : Maximum

110

3.2.1.4. - Etude de l’activité de Psittacula krameri par tranche horaire et par mois

L’observation du comportement de la Perruche à collier par tranche horaire et par mois a permis de préciser son activité en fonction du temps, et de voir quelle influence elles pouvaient avoir sur l’estimation des effectifs de cet oiseau.

3.2.1.4.1. – Activité de Psittacula krameri par tranche horaire

Du 25 février au 3 mai inclus, nous avons effectué des relevés chaque jour un relevé de la présence de la Perruche à collier dans le parc de l’Institut national agronomique d’El Harrach de 6h00 à 20h00. Nous avons ainsi fait 68 relevés journaliers pendant lesquels toutes les manifestations de la présence de l’espèce ont été notées. Les résultats sont exposés dans le tableau 19.

Tableau 19 – Abondance relative des contacts de Psittacula krameri par tranche horaire du 25 février au 3 mai 2005 à l’institut national agronomique d’El Harrach

<table>
<thead>
<tr>
<th></th>
<th>6h /8h</th>
<th>8h /10h</th>
<th>10h /12h</th>
<th>12h /14h</th>
<th>14h /16h</th>
<th>16h /18h</th>
<th>18h /20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Du 25 au 28 février (4 j.)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Du 1 au 31 mars (31 j.)</td>
<td>18</td>
<td>17</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Du 1 au 30 avril (30 j.)</td>
<td>70</td>
<td>22</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>Du 1 au 3 mai (3 j.)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Totaux</td>
<td>94</td>
<td>45</td>
<td>13</td>
<td>14</td>
<td>19</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>Moy. journ. sur 68 j.</td>
<td>1,38</td>
<td>0,66</td>
<td>0,19</td>
<td>0,21</td>
<td>0,28</td>
<td>0,94</td>
<td>0,14</td>
</tr>
<tr>
<td>Abondances relatives (%)</td>
<td>36,29</td>
<td>17,37</td>
<td>5,02</td>
<td>5,41</td>
<td>7,34</td>
<td>24,71</td>
<td>3,86</td>
</tr>
</tbody>
</table>

j. : jours ; Moy. journ. : Moyennes journalières

Nous avons choisi cette période du 25 février au 3 mai car elle coïncide avec la nidification de la Perruche à collier. Nos résultats montrent que la Perruche à collier est très active entre 6 h et 8 h avec un total de 94 contacts (36,3 %) et entre 16 h et 18 h avec
un total de 64 contacts (24,7 %). En moyenne journalière, on a 1,4 contact entre 6 h et 8 h et de 1,0 contact entre 16 h et 18 h (Tab.19 ; Fig. 31). La relation entre le nombre d'individus observé par jour et par heure et la valeur maximale de contact de la Perruche à collier montre qu'en mars, la corrélation est significative (P = 0,0093). Il semble qu'en mars, *Psittacula krameri* est plus importante en effectifs surtout le matin entre 6 h et 9 h (Fig. 32). Par contre pour le mois d’avril, cette corrélation est non significative (P = 0,7109), dans ce cas l’espèce est vue en groupe surtout la pendant la première semaine du mois d’avril, soit le matin ou soit l’après midi. Le Psittacidae durant cette période est en pleine phase de parade nuptiale (Fig. 33). La Perruche à collier reste très farouche et préfère garder la plus grande distance possible entre elle et ses prédateurs potentiels. Elle se manifeste très rarement entre 10 h et 12 h avec 13 contacts (5,0 %) et entre 12 h et 14 h avec 14 contacts (5,4 %). On peut la voir ou l’entendre exceptionnellement entre 18 h et 20 h (10 contacts, 3,9 %). Elle est très voyante et bruyante, se manifestant par son cri, par son vol, ou encore les deux à la fois. Elle peut aussi apparaître perchée sur un arbre. Sur un total de 159 manifestations, *Psittacula krameri* est surtout mentionnée au vol en train de crier (57,2 %). Le cri seul représente environ 30,2 % de ses manifestations de présence. Dans seulement 9,4 des cas elle est observée volant en silence, et encore plus rarement en train de percher (3,1 %) (Fig. 34), ce qu’elle fait essentiellement sur des Eucalyptus, des peupliers noirs ou sur des cyprès.

![Abondances relatives de l’activité de *Psittacula krameri* par tranche horaire de février à mai](image)

Fig. 31 - Abondances relatives de l’activité de Psittacula krameri par tranche horaire de février à mai

\[
y = -0.01x + 1.8745 \\
R^2 = 0.1331 \\
P = 0.0093
\]
Fig. 32 - Relation entre le nombre d'individus à valeur maximale de contacts journalier de Psittacula krameri et l'heure de la journée durant le mois de mars

![Graphique suivant la relation](image)

\[y = -0.003x + 1.0914 \]
\[R^2 = 0.0034 \]
\[P = 0.7109 \]

Fig. 33 - Relation entre le nombre d'individus à valeur maximale contacts journaliers de Psittacula krameri l'heure de la journée durant le mois d'avril

![Graphique suivant la relation](image)

Fig. 34 - Abondances relatives des manifestations Psittacula krameri de février à mai 2005

Sa direction de vol la plus fréquente dans le parc de l’INA d’El Harrach est au SSE, vers la plaine de la Mitidja, le littoral algérois et le Sahel (46,3 %). Plus rarement, elle va vers le SSW (13,5 %) et NNE (13,5 %). Les autres directions sont beaucoup moins fréquentes (de 1,9 à 7,4 %) (Fig. 35). La majorité de ces vols se font donc vers la plaine, et consistent en déplacements pré-alimentaires. On peut penser que, en ce qui concerne les quelques vols effectués vers la partie orientale du Littoral algérois, les perruches sont attirées par une végétation beaucoup plus importante que dans le Littoral occidental, trop fortement urbanisé.

3.2.1.4.2. – Activité de Psittacula krameri en fonction des mois

Les données que nous avons collectées sur l’activité mensuelle de la Perruche à collier dans la région d’Alger sont exposées dans le tableau 20.
Tableau 20 – Fréquences des contacts de Psittacula krameri mois par mois du 25 février au 3 mai 2005 dans les jardins de l'institut national agronomique d'El Harrach

<table>
<thead>
<tr>
<th></th>
<th>Février (4 j.)</th>
<th>Mars (31 j.)</th>
<th>Avril (30 j.)</th>
<th>Mai (2 j.)</th>
<th>Moyenne sur 68 j.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaux des contacts</td>
<td>du 25 au 28</td>
<td>du 1 au 31</td>
<td>du 1 au 30</td>
<td>du 1 au 3</td>
<td>2,8</td>
</tr>
<tr>
<td>Muy. journaliers sur 68 j.</td>
<td>2,5</td>
<td>2,25</td>
<td>5,26</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Abondences relatives (%)</td>
<td>3,36</td>
<td>27,03</td>
<td>51,00</td>
<td>3,11</td>
<td></td>
</tr>
</tbody>
</table>

j. : jours; Moy. : Moyennes

Fig. 35 - Directions prises par Psittacula krameri depuis les jardins d'El Harrach vers la Mitidja, le Littoral algérois et le Sahel

WSW : Ouest-Sud-Ouest ; ENE : Est-Nord-Est ; SSW : Sud-Sud-Ouest.
S : Sud ; E : Est ; N : Nord ; W : Ouest.

A El Harrach, c’est en avril et mai que la Perruche à collier se manifeste le plus en avril et en mai (Tab. 20). Le nombre de contacts obtenus en février et mars est fort comparable, avec une valeur peu inférieure à la moyenne générale.

Il est à souligner que Psittacula krameri se manifeste même à des températures assez basses. Ainsi, on pouvait l’entendre crier à 7h30 le 25 février 2005 malgré une température de +5 °C. Quelques jours plus tard, le 8 mars deux individus passaient au vol en criant 7 h 55’ au vol, par une température de +4 °C. Mais on ne la voit ni l’entend plus qu’une des températures inférieures à celles-ci. Ce fut le cas par temps de gel et de neige dans la région d’Alger à la fin de janvier 2005 lorsque le niveau thermique a chuté jusqu’à –1 °C. à mi-journée et même à –7 °C. au crépuscule. Pourtant cette vague de froid ne semble pas avoir eu de conséquences bien sensibles sur la mortalité de ce Psittacidé. Tout au plus a-t-on assisté à une diminution de l’activité des oiseaux, qui n’ont pratiquement pas été notés pendant quelques jours.

En automne et en hiver, la Perruche à collier tend à se regrouper en bandes, comme celle de 15 individus observés en janvier 2006 près de l’Oued Benicha, ou celle de 100 individus vus en octobre-novembre 2003 dans la zone hôtelière d’Ain Taya. Ce
comportement s'explique probablement par le besoin de bénéficier d'une certaine protection contre des facteurs climatiques comme le vent, la pluie ou de fortes chaleurs. Dès la fin de l'hiver les bandes de Perruche se fragmentent. Avec l'arrivée du printemps leurs manifestations sonores s'entendent un peu partout, ce qui Elles correspond au début de la formation des couples, qui ne sont généralement observés que début mai.

3.2.1.5. - Comportement trophique de la Perruche à collier

Les consommations de fruits, de graines, de fleurs, de bourgeons et de thalles par *Psittacula krameri* sont disposées en fonction des mois de la période 1996 – 2006 au sein du tableau 21.

<table>
<thead>
<tr>
<th>Plante</th>
<th>Janvier</th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Juillet</th>
<th>Août</th>
<th>Septembre</th>
<th>Octobre</th>
<th>Novembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td></td>
</tr>
<tr>
<td>Graines</td>
<td></td>
</tr>
<tr>
<td>Fleurs</td>
<td></td>
</tr>
<tr>
<td>Bourgeons</td>
<td></td>
</tr>
<tr>
<td>Thalles</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 21 – Fruits, graines, fleurs et thalles consommés sur les plantes fréquentées par la Perruche à collier dans la région d'Alger et la plaine de la Mitidja.

Fr : fruit ; Fr. v : fruit vert ; Fl : fleur ; Fe : feuille ; Gr : graine ; Br j : Jeunes bourgeons ; Th : thalle ; (*) : espèces indigènes

115
Nos observations du comportement trophique de la Perruche à collier que nous avons faits de 1996 à 2006, montrent que cette espèce a un régime alimentaire phytophage fort varié correspondant à une valeur de H' égale à 5,1 bits. Elle s'attaque à 44 espèces végétales différentes, dont elle prélève les fruits, des graines, des fleurs, des feuilles, les jeunes bourgeons et même des thalles en ce qui concerne les lichens installés sur certains arbres (Tab. 21).

Si les fruits ne sont pas trop gros, comme par exemple ceux du Mûrier, la Perruche à collier les avale en entier, et si ils sont plus gros elles en arrachent la pulpe par morceaux sans en ingurgiter les graines, comme c’est le cas pour les néfles du Japon vertes et mûrisantes, les dattes d’Arecastrum romanzooffianum et les pêches de Prunus persica. Cependant dès avril les fruits de “l’oreille de nègre” Enterolobium timbouva (Fabaceae) et les néfles en fin de maturité sont ingérés en entier par Psittacula krameri. En fait la consommation des bibaces d’Eriobotrya japonica se poursuit jusqu’au début de juin, parallèlement à celle des mûres de Morus alba et de Morus nigra. Une fois une source de nourriture repérée, les perfouches y reviennent régulièrement. Ainsi, en avril et mai 2006 plus de 5 perfouches étaient observées chaque matin à Sidi Moussa près de l’Oued Benich, mangeant des fruits de mûriers Morus alba et M. nigra ainsi que des figues de Ficus retusa. De même, en avril et mai 2003 à Dar El Beida, 2 à 4 perfouches viennent s’alimenter pratiquement chaque jour sur des fruits du mûrier blanc. Le Néflier du Japon est cultivé en grandes plantations totalisant 800 ha dans la plaine de la Mitidja, où La présence d’une quinzaine de variétés, notamment “Tanaka”, ”Victor”, ”Saint-Michell”, ”Dr Trabut”, ”Léon Ducellier” et “Taza” dont la floraison s’étale de septembre à janvier et la fructification d’avril à juin assure aux perfouches un approvisionnement abondant sur de longues périodes. Dans la région d’Alger, une autre source d’approvisionnement régulier est assuré aux perfouches par la maturation des dattes des différents pieds du palmier des Canaries, qui est établé sur toute l’année. Elle se nourrit aussi de fleurs et de fruits notamment de Rosacées cultivées comme les pêches de Prunus persica, lesabricots de Prunus armeniaca et les mères de Prunus avium (Tab. 21).

Durant l’été la Perruche à collier mange des graines de résineux comme Pinus halepensis, P. pinaster et P. pinea qu’elle extirpe grâce à son bec crochu. Elle complète
Chapitre III – Résultats sur l’avifaune de la Mitidja

son menu par des graines de thuya *Callitris articulata* et par ceux du ficus *Ficus retusa*. Cette espèce d’arbre encadre souvent les avenues d’Alger et les grandes rues des villes et villages de la Mitidja telles que Khemis Khechna, Meftah, Larbâa, Bougara et Boufarik. Ce ficus porte de petits fruits verts tout au long de l’année mais ce n’est que lorsqu’ils mûrissent, grossissent et acquièrent une teinte violette à noirâtre entre mai et juillet qu’ils attirent les perruches. Enfin, celles-ci ont été observées dans un vignoble à la mi-août 2006 près de Bourkika, en train de s’attaquer aux raisins.

En automne la Perruche à collier continue à consommer la pulpe des plaquemines sur *Diospyros kaki* en délaissant les graines, et s’attaque aussi aux petits fruits verts entiers de *Washingtonia robusta* et de *W. filifera*. Sur *Phoenix canariensis*, elle ingère les dattes vertes, minuscules entières, mais débite les dattes mûres, beaucoup plus grosses, en fraguements. Sur le néflier du Japon *Eriobotrya japonica* et sur le pêcher *Prunus persica* elle recherche aussi bien les fruits que les fleurs. Cependant, d’une manière générale la Perruche à collier ne semble consommer qu’un type d’organe par espèce végétale. Elle peut s’attaquer à des fructifications aussi dures que les noix du pacanier ou du noyer commun, certes d’un apport énergétique élevé, mais dont l’ouverture demande elle-même une dépense d’énergie notable, et ce même si d’autres sources de nourriture d’accès plus facile sont à sa disposition, en particulier en octobre et en novembre (Tab. 21). Si les noyers sont rares dans la région, les pacaniers y sont dispersés ça et là dans les jardins familiaux du Sahel algérois, de Hacen Badi et en Mitidja comme à Oued Smar, à El Djemhouria, à Boufarik et à Beni Mered. Nous avons ainsi observé sur le Plateau de Belfort, à la mi-octobre 2003, un vol de 20 perruches se dirigeant vers une allée de près de 25 pacaniers située à Oued Smar.

Les fruits de 19 espèces sont consommés pendant toutes les époques de l’année. Les fleurs, appartenant à 6 espèces seulement, sont ingérées pendant trois périodes, soit janvier-février, juin-juillet et septembre-novembre. Les graines sont consommées en avril, prélevées sur 1 espèce et en août-novembre sur 5 espèces. Il est à souligner que l’abondance relative des espèces végétales par type d’organe montre la dominance de la consommation des fruits à 100 % en mars, en mai et en décembre. Par ailleurs, l’ingestion des graines vient par la suite avec une abondance relative de 37,5 % en août. Elle est suivie par les fleurs dont la valeur maximale notée en septembre est de 33,3 %.

Les autres types d’organes végétaux sont faiblement consommés (Tab. 22; Fig. 36).

Tableau 22 – Abondances relatives des espèces végétales par type d’organe (fruits, graines, fleurs, feuilles, bourgeois et thalles) consommées par *Psittacula krameri* par mois

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuilles</td>
<td>0</td>
<td>7,69</td>
<td>0</td>
</tr>
<tr>
<td>Thalles</td>
<td>0</td>
<td>7,69</td>
<td>0</td>
</tr>
<tr>
<td>Fruits</td>
<td>85,71</td>
<td>53,85</td>
<td>100</td>
<td>83,33</td>
<td>100</td>
<td>87,5</td>
<td>77,78</td>
<td>62,5</td>
<td>50</td>
<td>50</td>
<td>72,73</td>
<td>100</td>
</tr>
<tr>
<td>Fleurs</td>
<td>14,29</td>
<td>30,77</td>
<td>0</td>
<td>0</td>
<td>12,5</td>
<td>22,22</td>
<td>0</td>
<td>33,33</td>
<td>25</td>
<td>9,09</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Graines</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16,67</td>
<td>0</td>
<td>0</td>
<td>37,5</td>
<td>16,67</td>
<td>25</td>
<td>9,09</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bourgeons</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9,09</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totaux</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>8</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Fig. 36 - Abondances relatives des espèces végétales consommées par Psittacula krameri par type d’organe

Bj : Bourgeons ; G : Graines ; Fl : Fleurs ; Fr : Fruits ; Th : Thalles ; Fe : Feuilles

On observe une évolution très nette de l’alimentation des perruches à collier au cours de l’année (Tab. 22), correspondant à la succession des ressources de nourriture disponibles depuis la floraison jusqu’à la maturation des fruits et la formation des graines. La diversité alimentaire de la Perruche à collier est la plus grande en été, de juin à août avec un maximum de 16 espèces, et aussi de façon un peu moins marquée durant la période fraîche et humide allant de décembre à février avec un maximum de 15 espèces. C’est au contraire pendant les mois de mars et de mai que cette diversité est la plus faible, avec respectivement 3 et 5 espèces. Peut-être est-ce parce que les perruches disposent-elles de leur nourriture abondante représentée par les fruits du néflier du Japon et les mûres du mûrier blanc et du mûrier noir ? Ce serait là une explication qui fait que la Perruche à collier s’intéresse guère aux autres plantes à cette époque de l’année. De début novembre à la fin février, les perruches consomment même des dattes encore petites et vertes, peut-être parce que les autres sources de nourriture ne sont plus très abondantes. Enfin, elles n’exploitent les autres espèces végétales que pendant un temps beaucoup plus court dans l’année, quatre mois en période hivernale pour le palmier dattier Phoenix dactylifera et pour le lilas de Perse Melia azedarach, trois mois au plus pour d’autres espèces botaniques, parfois moins d’un mois pour certaines plantes.

L’introduction de nombreuses espèces végétales fructifères d’origine tropicale dans le Jardin d’essai du Hamma au cours de la période coloniale 1860 –1962, suivie de leur dispersion dans les jardins familiaux du Sahel algérois et de la frange septentrionale de la plaine de la Mitidja, a permis de diversifier les disponibilités alimentaires des oiseaux de la région, exotiques ou non. De plus, ces plantes introduites sont souvent utilisables par les oiseaux à un moment où les espèces indigènes, spontanées ou d’ornement, ne le sont plus, ou bien peu (Tab. 22). Leur dissémination au sein de la région ne constitue pas un obstacle à leur utilisation par les perruches, qui sont capables de parcourir de grandes distances de leur vol rapide et direct.

L’évolution des densités des Columbidae au cours d’une période de 15 ans (Tab. 22)
varie d’une espèce à une autre (Tab. 22). Parmi elles trois espèces seulement ont connu une progression de leurs populations. Ce sont la Tourterelle turque (dont les effectifs ont été multipliés par plus de 4 de 1992 à 2006), la Tourterelle des bois et le Pigeon ramier. La partie concernant la dernière espèce citée va être développée ultérieurement. La Tourterelle maillée a connu une évolution en dents de scie, mais il faudrait disposer d’observations sur une période plus longue pour savoir exactement de quoi il retourne. Il en est un peu de même du Pigeon biset féral, mais il est difficile de se prononcer pour cette espèces fortement régulée par l’homme, et enfin la tourterelle domestique, arrivée en 1992, est encore représentée par des effectifs tellement faibles qu’ils n’ont pu être chiffrés de façon précise.

3.2.2. – Cas de la Tourterelle turque *Streptopelia decaocto*

La Tourterelle turque *Streptopelia decaocto* est une espèce nouvelle récemment installée en Algérie où elle s’est bien installée, et dont elle fait indubitablement partie de la faune, de sorte que nous l’examinerons ici parmi les autres Columbïdes.

3.2.2.1. – Étude de l’expansion de la Tourterelle turque en fonction des années

Afin de mieux cerner l’évolution des populations de la Tourterelle turque dans la région d’étude, nous avons suivi l’évolution de sa densité dans l’aire de 10 hectares représentée par les jardins de l’institut national agronomique d’El Harrach. Les résultats de ce travail sont présentés dans le tableau 23 pour toutes les espèces de Columbïdes qui y vivent, et sont exprimés en territoires, définis par la présence d’un nid où d’un mâle chanteur.

Tableau 23 – Densités annuelles (nombres de couples pour 10 ha) pour toutes les espèces de Columbïdes vivant dans le parc de l’institut national agronomique d’El Harrach, milieu suburban à la limite du Sahel algérois et de la Mitidja

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Columba livia</td>
<td>8,25</td>
<td>27,25</td>
<td>9,25</td>
<td>14</td>
<td>19</td>
<td>18</td>
<td>17,5</td>
<td>21,75</td>
<td>16,88</td>
</tr>
<tr>
<td>C. palumbus</td>
<td>1</td>
<td>4</td>
<td>9,75</td>
<td>17,5</td>
<td>18</td>
<td>48,5</td>
<td>50,75</td>
<td>57,25</td>
<td>25,84</td>
</tr>
<tr>
<td>Streptopelia turtur</td>
<td>8</td>
<td>12,5</td>
<td>13,5</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>22,75</td>
<td>36,25</td>
<td>17,63</td>
</tr>
<tr>
<td>S. senegalensis</td>
<td>2</td>
<td>2</td>
<td>5,5</td>
<td>7</td>
<td>4</td>
<td>9,5</td>
<td>5,75</td>
<td>6,25</td>
<td>5,25</td>
</tr>
<tr>
<td>S. decaocto</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>0,5</td>
<td>2,25</td>
<td>5,75</td>
<td>22,50</td>
<td>31,5</td>
<td>7,81</td>
</tr>
<tr>
<td>S. risoria</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

un facteur supérieur à 5 et à 6 en 2005 et 2006 respectivement (Tab. 23, Fig. 37). La tourterelle turque ne semble se heurter à aucune concurrence de la part des autres espèces de Columbidés, et en particulier pas vis-à-vis de la Tourterelle maillée en hiver ni de la Tourterelle des bois en été. La tourterelle turque chante même en-dehors de la saison des nids, en été et en automne. C'est ainsi que les trois passages que nous avons effectués dans le quadrat en septembre 2005 nous ont indiqué la présence de 10,8 couples chanteurs sur 10 ha. La Tourterelle turque chante même pendant les jours pluvieux, comme en janvier 2004 aux abords du Marais de Réghaïa, perchée sur un cyprès ou en janvier 2006 dans les jardins du Littoral algérois d'Oued Smar, El Alia, Beaulieu, Semmar et Ain Naadja. Même les chutes de neige ne l'empêchent pas d’être active, comme dans la région d'Alger de la fin de janvier 2005, quant 9 ou 10 individus sont observés en train d'effectuer des vols de parade au dessus des jardins d'Oued Smar. Tous les contacts auditifs et visuels obtenus avec la Tourterelle turque dans le quadrat en 2005 qu'en 2006 sont reportés dans le tableau 24.

<table>
<thead>
<tr>
<th></th>
<th>1 II au 15 III</th>
<th>15 III - 1 IV</th>
<th>1 IV à 15 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quads q1/q2</td>
<td>q3/q4</td>
<td>q5/q6</td>
</tr>
<tr>
<td>2005</td>
<td>C visuel 4,5</td>
<td>5</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>C auditif 5</td>
<td>3,5</td>
<td>7,5</td>
</tr>
<tr>
<td>2006</td>
<td>C visuel 4,5</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>C auditif 2,5</td>
<td>11</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Tableau 24 – Moyennes des contacts auditifs et visuels avec Streptopelia decaocto en obtenus dans le quadrat en 2005 et 2006

C. : contact

Les données du tableau 24 montrent qu'en 2006 l’espèce manifeste davantage sa présence qu’en 2005 (Fig. 37). Cependant la Tourterelle turque est beaucoup plus vue qu’entendue en 2006, (13 contacts visuels moyens entre les relevés q9/q10 et q11/q12, contre 11 contacts auditifs entre q3/q4), alors que c’est l’inverse en 2005 (4,5 contacts visuels contre 7,5 contacts auditifs en q5/q6) (Tab. 24; Fig. 38).
Fig. 37 - Evolution de la densité en nombres de couples S. decaocto dans un milieu sub-urbain (limite du Sahel algérois et la Mitidja) de de 1992 à 2006

Fig. 38 - Variations des valeurs des contacts auditifs et visuels eus avec Streptopelia decaocto en fonction des relevés faits dans les quadrats en 2005 et 2006

3.2.2.2.- Répartition de la Tourterelle turque dans la région d’étude

Aussi bien selon les échantillonnages fréquentiels progressifs effectués entre 2004 et 2006 que selon les prospections et observations faites dans l’ensemble des stations, il
apparaît que la Tourterelle turque colonise davantage le nord et l’est de la plaine de la Mitidja que la partie ouest. Les fréquences obtenues dans les 12 stations de la région d’étude sont fortes à Oued Smar (11,6 %) et à Cherarba (4,8 %), alors que dans les autres elles sont nulles, comme à Baraki, Birtouta, Boufarik et Baida, ou encore très faibles et comprises entre 1,7 % à Régahaïa et 3,3 % à Chebli (Fig. 39). L’espèce préfère visiblement les milieux suburbains, se nourrit et se reproduit à proximité des habitations. Elle est absente dans les bosquets hors des villes et dans les parcelles agricoles. Des relevés réalisés en 2007 dans le quadrant près de la ferme d’El Aiachi à Baraki, en milieu strictement agricole y montre son absence, bien que d’autres espèces de Columbiformes soient présentes dans ce même milieu, comme le Pigeon ramier avec 4 couples, le pigeon fétal avec 7,3 couples et la Tourterelle des bois avec 7 couples. D’autre part, l’extension de la Tourterelle turque se fait en fonction des distances qui séparent villes et villages voisins. La proximité des agglomérations permet de comprendre les modalités de pénétration et de progression de l’espèce dans la plaine. Son absence se remarque au centre de la Mitidja entre Birtouta, Boufarik et Baida (Fig. 40), zone peu habitée et surtout caractérisée par de vastes vergers d’agrumes et de rosacées fruitières. La Tourterelle turque évite parcourir de longues distances sur des terres inhabitées et préfère se déplacer sur de courts itinéraires reliant des zones urbanisées. Les bâtiments des fermes tels que les logements des cultivateurs, les hangars pour le rangement des machines agricoles et le stockage de différents produits et les locaux d’élevage peuvent servir pour le transit des petits groupes ou d’oiseaux isolés.

La Tourterelle turque a été naturellement signalée d’autres localités que des stations d’échantillonnage (Fig. 40). Dès janvier 2004 elle fut observée, perchée sur un fil téléphonique, au centre du village d’El Djemhouria. Le 19 janvier 2006 trois individus ont été vus au vol au-dessus d’un verger d’agrumes à Ouled Chbel près de Chaabia, se dirigeant vers la zone péri-urbaine du village. Début mars 2006, deux individus étaient en train de parader aux alentours d’une ferme d’élevage à Hraoua, près de Ain Taya, et le 9 du même mois un couple était perché sur un poteau électrique à Tessala El Merjda. Au mois d’avril de la même année, l’espèce fut aussi observée dans le centre ville de Chiffa et à Ahmer el Ain, à Labâa, près de Haouch Hafidh, à Cherarba et près de la ferme El Haddad, aux Eucalyptus.

![Fig. 39 - Fréquences de Streptopelia decaocto entre 2004 et 2006 dans la plaine de la Mitidja](image)
3.2.3. – Cas du Pigeon ramier *Columba palumbus*

Dans cette partie les résultats sur l’évolution des effectifs de *Columba palumbus* en fonction du temps et sur leurs déplacements sont présentés.

3.2.3.1. – Etude de l’évolution des effectifs de *Columba palumbus*

Le Pigeon ramier existe un peu partout dans la plaine de la Mitidja. Il niche dans les arbres des jardins publics et même sous les toits des immeubles. Il y a près de deux décennies de cela, ce il ne fréquentait que les parcs et les grands jardins et demeuraît absent des zones urbaines. Les échantillonnages fréquentiels progressifs (E.F.P.) ont révélé sa présencedans la majorité des stations de la Mitidja (Fig. 17b), sauf dans celles de Réghaïa et de Bourkika, où il n’a été observé qu’en-dehors des relevés (Tab. 13).

Au cours des huit années de notre étude, la densité du Pigeon ramier a connu une évolution similaire à celle de la Tourterelle turquoise (Tab. 23 ; Fig. 41).
En 1992 un seul couple de Ramiers a été trouvé dans le quadrat, alors que la densité de l’espèce y était de 57,3 couples en 2006, soit une multiplication par plus de 57 (Tab. 23; Fig. 41). Cet essor fut particulièrement rapide 2001 et 2002 quand la densité du Ramier passa de 18 à 48,5. A partir de ce moment on pouvait voir de grands vols, dépassant parfois la centaine d’individus aux limites du Sahel algérois et de la Mitidja. Ainsi, en août 2005 à Sidi Moussa près de Ouled Allel, on a pu observer plusieurs vols de plus de 200 individus. Dans le même ordre d’idées, pendant plusieurs jours en mars 2006 plus de 120 Ramiers sont venus se regrouper sur de vieux Eucalyptus dans les jardins de l’I.N.A. à partir de 18 h 30’. Pendant les périodes fraîches et humides le Ramierpréfère se réfugier à l’intérieur de la couronne foliaire des Pins qui lui offrent un bon abri.

Il est possible d’émettre plusieurs hypothèses, non exclusives l’une de l’autre, pour expliquer l’importante augmentation des effectifs du Pigeon ramier de 1992 jusqu’en 2007. Une des plus importantes est la réduction substantielle de la pression de chasse. Celle-ci est que a été réduite à néant depuis plus d’une décennie en Algérie, à la suite à l’interdiction générale de la chasse, exception faite pour quelques espèces comme le sanglier, ce qui a créé des conditions favorables pour les oiseaux-gibiers, dont le Ramier. D’autre part, la mise en œuvre de textes législatifs européens limitant les périodes de chasse de la palombe le long de son itinéraire migratoire en Europe occidentale a aussi contribué à l’augmentation générale de cette espèce. En outre, tant en Europe qu’au Maghreb le Pigeon ramier montre une nette tendance à se sédentariser, peut-être en partie encouragé en partie par la diminution des dérangements induits par ces mesures en partie aussi à cause des changements climatiques. On peut noter ici que les feux de forêts qui se produisent chaque année depuis 1995 environ jusqu’à aujourd’hui sur l’Atlas mitidjien à la hauteur de Meftah, Labbâa, Bougara, Hammam Melouane et Bliada ont réduit les disponibilités alimentaires des Ramiers, et plus particulièrement les glands de Quercus ilex et Q. faginea et les fruits de Phillyrea angustifolia, Olea europea, Pistacia lentiscus et Prunus avium. Il est possible que ces aliments forestiers aient été remplacés par d’autres, que l’oiseau trouve dans les milieux agricoles comme les bulbes des Oxalis cernua, les fèves de Vicia faba, les néfles d’Eriobotrya japonica et les jeunes feuilles du frêne Fraxinus angustifolius présent le long des oueds qui traversent la plaine. Il faut s’attendre à ce qu’en 2008 la population de ce Columbidae soit encore plus importante dans
l’Algérois compte tenu des incendies qui ont détruits plusieurs milliers d’hectares d’oliviers en Grande Kabylie.

3.2.3.2. – Etude des déplacements des populations du Pigeon ramier vers ses lieux de gagnage en Mitidja.

Nous avons étudié les déplacements trophiques du Pigeon ramier depuis ses dortoirs jusqu’à ses lieux de gagnage en Mitidja en dénombrant les effectifs de ses vols, heure par heure, et en notant la direction de ces derniers à la station de Baraki, sise entre l’Atlas tellien et la mer Méditerranée, à la limite entre les parties centrale et orientale de la plaine.

3.2.3.2.1. – Déplacements des effectifs de *Columba palumbus* par tranche horaire

Les résultats de nos décomptes par tranche horaire et par mois sont consignés dans le tableau 25

Tableau 25– Effectifs et abondances relatives de *Columba palumbus* dénombrés par tranche horaire entre mars et mai 2006 à la station de Baraki.

<table>
<thead>
<tr>
<th>Mois</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramètres</td>
<td>Effectifs</td>
<td>A.R. %</td>
<td>Effectifs</td>
</tr>
<tr>
<td>6h – 7h</td>
<td>100</td>
<td>31,06</td>
<td>13</td>
</tr>
<tr>
<td>7h – 8h</td>
<td>201</td>
<td>62,42</td>
<td>29</td>
</tr>
<tr>
<td>8h – 9h</td>
<td>21</td>
<td>6,52</td>
<td>0</td>
</tr>
<tr>
<td>9h - 10h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10h - 11h</td>
<td>0</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>11h - 12h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12h - 13h</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>13h - 14h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totaux</td>
<td>322</td>
<td>100</td>
<td>66</td>
</tr>
</tbody>
</table>

A.R. % : Abondances relatives

Le plus grand nombre d’individus (322) observé le fut au mois de mars, et correspond à 70 % du total général, avril et mai se partageant à peu près équitablement les 30 % restants (Tab. 25. Toujours en mars, les effectifs les plus importants sont enregistrés entre 7 et 8 h (201 individus, 62,4 %) et entre 6 et 7 h (100 individus, 31,1 %). Seulement 21 pigeons (6,5 %) ont été observés entre 8 et 9 h (Tab. 24 ; Fig. 42a). Au mois d’avril, les effectifs sont beaucoup moins importants qu’en mars, et le maximum est toujours entre 7 et 8 h avec 29 individus (43,9 %). Cependant, un maximum secondaire (24, 36,4 %) est enregistré entre 10 et 11 h (36,4 %), et seulement 13 individus sont notés entre 6 et 7 h (19,7 %) (Fig. 42b). En mai, les Ramiers se déplacent peu le matin, et à peine 4 individus sont dénombrés entre 7 et 8 h (5,6 %). Les plus forts effectifs sont notés entre 11 et 12 h avec 41 individus (57 %) et entre 12 et 13 h avec 20 individus (27,8 %) (Fig. 42c).

![Diagramme](image1)

![Diagramme](image2)

![Diagramme](image3)

Fig. 42 – Abondances relatives des effectifs de Columba palumbus par tranche horaire entre mars et mai 2006 dans la station de Baraki

quatre et huit oiseaux passent en direction de Cherarba. Toujours dans cette station, le 16 octobre 2006 entre 16 h 30’ et 17 h, des groupes de sept à 12 individus passent au retour, venant de Meftaâ et se dirigeant vers le Nord-Ouest. Pendant la période de nourrissage, les parents effectuent des vols alimentaires pendant la journée, seuls ou par petits groupes. Ces déplacement sont le plus souvent de faible amplitude. Ces vols
alimentaires vers la plaine trouvent probablement leur cause dans l’insuffisance des ressources alimentaires des parcs et jardins de l’agglomération compte tenu des effectifs élevés des ramiers en milieu suburbain et urbain, surtout en période de reproduction et d’émancipation des jeunes, obligeant les oiseaux à aller chercher leur pitance, dans les jardins, vergers et culture de la Mitidja, et peut-être même jusque sur le flanc nord de l’Atlas tellien.

3.2.3.2.2. – Directions prises par les vols de pigeons ramiers à la station de Baraki

Nos résultats obtenus à la station de Baraki montrent que les vols de Pigeons ramiers se dirigent préférentiellement suivant trois directions, sud, sud-ouest et sud-est (Fig. 43a, b, c). En mars plus des deux-tiers des oiseaux se dirigent au Sud, vers les localités de Bentalha, Sidi Moussa et Bougara, et un quart vers le sud-ouest, direction de Birtouta, Boufarik, Oued el Alleug et Blida. Le reste des effectifs des pigeons ramiers s’orientent vers le sud-est (7,3 %), soit Ouéd el Hadj près de Cherarba et Meftah (Fig. 43a). Un mois plus tard, en avril, les oiseaux en vol en direction du sud sont moins nombreux qu’en mars (56,1 %), alors que les déplacements vers le sud-ouest sont beaucoup nettement nombreux (39,4 %), et que seulement 4,6 % des effectifs de vont au sud-est (Fig. 43b). Les déplacements vers le sud-ouest deviennent dominants en mai, quand ils représentent près des deux tiers du total, et que ceux plein sud ne comptent plus que pour un peu moins d’un tiers, et que les déplacements au sud-est restent très faibles (6,9 %) (Fig. 43c). Les vols des pigeons ramiers vers le sud jusqu’à Bentalha, Sidi Moussa et Larbaa et vers le sud-ouest en direction de Birtouta et d’Oued El Alleug sont essentiellement pré-alimentaires.

Les lieux de gagnage sont caractérisés par de vastes parcelles fertiles et productives pendant presque toute l’année. Le système de rotation des cultures maraîchères, fourragères et céréalières et la présence de vergers de néfliers offrent aux pigeons ramiers une alimentation abondante, riche et diversifiée. Au contraire, le faible nombre de déplacements vers le sud-est et l’est de la Mitidja, par exemple les Eucalyptus et Meftah, s’explique par l’urbanisation intense de cette région, où les oiseaux ne trouvent que peu de ressources et sont fréquemment dérangés. Dans la région d’étude, les Ramiers n’utilisent les terres agricoles ouvertes que rarement, quand ils n’y rencontrent aucun dérangement dû aux activités humaines.
3.2.3. – Cas de Bubulcus ibis

Dans le présent paragraphe les variations des effectifs des populations de Bubulcus ibis sont présentées. Elles sont suivies par les différents types de milieux fréquentés par cette espèce d’oiseau.

3.2.3.1. – Etude des variations des effectifs du Héron garde-boeufs Bubulcus ibis dans la Mitidja

Des dénombrements des effectifs du Héron garde-bœufs ont été effectués
mensuellement de janvier à décembre 2006. On trouvera les données recueillies au cours de ce travail dans le tableau 26.

Tableau 26– Valeurs moyennes, maximales et minimales des effectifs de *Bubulcus ibis* recensés de janvier à décembre 2006 en Mitidja

<table>
<thead>
<tr>
<th></th>
<th>Moyenne + Ecart-type</th>
<th>Maxima</th>
<th>A.R. %</th>
<th>Minima</th>
<th>A.R. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>80,86 ± 18,38</td>
<td>150</td>
<td>4,06</td>
<td>25</td>
<td>11,26</td>
</tr>
<tr>
<td>II</td>
<td>86,25 ± 18,38</td>
<td>400</td>
<td>10,83</td>
<td>8</td>
<td>3,60</td>
</tr>
<tr>
<td>III</td>
<td>271,00 ± 95,46</td>
<td>2000</td>
<td>54,17</td>
<td>6</td>
<td>2,70</td>
</tr>
<tr>
<td>IV</td>
<td>80,00 ± 70,71</td>
<td>130</td>
<td>3,52</td>
<td>30</td>
<td>13,51</td>
</tr>
<tr>
<td>V</td>
<td>12,33 ± 4,24</td>
<td>17</td>
<td>0,46</td>
<td>9</td>
<td>4,05</td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIII</td>
<td>125,00 ± 35,36</td>
<td>150</td>
<td>4,06</td>
<td>100</td>
<td>45,05</td>
</tr>
<tr>
<td>IX</td>
<td>65,00 ± 49,50</td>
<td>100</td>
<td>2,71</td>
<td>30</td>
<td>13,51</td>
</tr>
<tr>
<td>X</td>
<td>33,50 ± 2,12</td>
<td>35</td>
<td>0,95</td>
<td>32</td>
<td>14,41</td>
</tr>
<tr>
<td>XI</td>
<td>59,09 ± 49,50</td>
<td>300</td>
<td>8,13</td>
<td>5</td>
<td>2,25</td>
</tr>
<tr>
<td>XII</td>
<td>108,14 ± 78,49</td>
<td>260</td>
<td>7,04</td>
<td>9</td>
<td>4,05</td>
</tr>
</tbody>
</table>

A.R. % : Abondances relatives

Nous avons rencontré le Héron garde-boeufs presque à chaque sortie pendant toute l’année 2006, sauf en juin et juillet (Tab. 26). La grande majorité des observations concerne des groupes de quelques individus à plusieurs dizaines, les solitaires étaient rares. C’est en mars que les effectifs moyens observés étaient les plus élevés (271 ± 95,46 ind.), plus de deux fois qu’en août (125 ± 5,36 ind) et surtout qu’en décembre (108,1 ± 78,49 ind.). Pendant les autres mois, les effectifs moyens varient d’une douzaine en mai à plus de 85 en février (Tab. 26 ; Fig. 44). Les plus fortes concentrations de hérions garde-boeufs sont notées en mars près de la décharge publique d’Oued Smar avec près de 2000 individus (54,2 %). En revanche les valeurs minimales les plus faibles sont signalées avec 5 individus (2,3 %) en novembre dans des terres agricoles d’Ahmer El Ain, labourées depuis plusieurs semaines.
Fig. 44 - Effectifs moyens mensuels de Bubulcus ibis recensés en 2006 en Mitidja

Les heures de regroupement des effectifs les plus importants du Héron garde-bœufs sont varient d’une saison à l’autre. Au printemps, les trois quarts des effectifs sont observés entre 8 et 10 h le matin. En automne, c’est entre 14 et 16 h que le maximum, toujours à peu près les trois quarts, sont observés. En hiver, le maximum, presque les deux tiers, est observé un peu plus tard, entre 16 et 18 h. Le maximum de cette tranche de temps est observé en été avec 71,4 % (Fig. 45).

Les Hérons garde-bœufs se rassemblent soit dans leurs zones d’alimentation, dans leurs dortoirs ou encore dans leurs sites de nidification. Ce comportement grégaire permet également à l’espèce de bénéficier d’une certaine protection face aux prédateurs. Un comportement inhabituel a été observé dans la plaine de la Mitidja, quand 40 individus étaient vus posés au sol, figés la tête tournée vers le bas, dans des terres labourées de Bourkika, le 13 février 2006 à 8 heures du matin. Auraient-ils passé la nuit en cet endroit ? Seraient -ils même venus la veille et attendaient le lever du jour pour chercher leurs proies entre les mottes après le passage des machines agricoles.
3.2.3.2. – Etude des milieux fréquentés par *Bubulcus ibis* dans la Mitidja

Très tôt le matin les Hérons garde-bœufs quittent les dortoirs et vont se répartir dans différents milieux de la plaine de la Mitidja. Afin de définir les préférences de cette espèce pour tel ou tel type de milieu, nous avons établi des moyennes de fréquentation à l’aide de toutes les observations que nous avons faites de janvier à décembre 2006. Elles sont rassemblées dans le tableau 27.

<table>
<thead>
<tr>
<th>Répartition des Hérons garde-bœufs</th>
<th>Terres ouvertes (laborables)</th>
<th>Terres semi-ouvertes (v+m)</th>
<th>Lieux de perche</th>
<th>Marécages</th>
<th>Dépotoirs s. et décharges p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eff. m.</td>
<td>Eff. m.</td>
<td>Eff. m.</td>
<td>Eff. m.</td>
<td>Eff. m.</td>
<td>Eff. m.</td>
</tr>
<tr>
<td>A.R. %</td>
<td>A.R. %</td>
<td>A.R. %</td>
<td>A.R. %</td>
<td>A.R. %</td>
<td>A.R. %</td>
</tr>
<tr>
<td>I</td>
<td>14,67</td>
<td>2,78</td>
<td>0</td>
<td>162,5</td>
<td>39,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35,67</td>
<td>53,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,49</td>
</tr>
<tr>
<td>II</td>
<td>96</td>
<td>18,22</td>
<td>71</td>
<td>47,36</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,71</td>
</tr>
<tr>
<td>III</td>
<td>150</td>
<td>28,47</td>
<td>35,4</td>
<td>23,62</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>12,5</td>
<td>2,37</td>
<td>35,4</td>
<td>23,62</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,12</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>VIII</td>
<td>125</td>
<td>23,73</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12,20</td>
</tr>
<tr>
<td>IX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,39</td>
</tr>
<tr>
<td>X</td>
<td>32</td>
<td>6,07</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>XI</td>
<td>23,67</td>
<td>4,49</td>
<td>43,5</td>
<td>29,02</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,29</td>
</tr>
<tr>
<td>XII</td>
<td>73</td>
<td>13,86</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,88</td>
</tr>
</tbody>
</table>

Tableau 27 – Répartition des Hérons garde-bœufs par type de milieu et par saison de l’année.
(v + m) : (vergers + maquis) ; s. : sauvages ; p. : publics ; Eff. m. : Effectifs moyens;
A.R. % : Abondance relative

Dans la plaine de la Mitidja, le Héron garde-bœufs fréquente cinq types de milieux : les terres ouvertes labourables, les terres semi-ouvertes portant des arbustes telles que les vergers et les maquis, les reposoirs et dortoirs, les marécages et les décharges sauvages ou autorisées. Le milieu le plus fréquenté est constitué par les terres ouvertes/semi-labourables qu’il utilise 8 mois sur 12. Les effectifs moyens les plus importants y sont observés en mars avec 150 individus soit une abondance relative de 28,5 % et en août avec 125 ind. (23,7 %). En février ces effectifs tombent à 96 (18,2 %), pour devenir relativement faibles les autres mois (Tab. 27). Le Héron garde-bœufs fréquente en second lieu les décharges publiques, pendant 6 mois sur 12 où les effectifs moyens les plus forts sont notées en mars avec 1050 ind. (70,9 %) et en décembre avec 250 individus (16,9 %). Cette fréquentation des décharges se développe d’ailleurs de plus en plus. C’est par exemple le cas de celle de Boufarik où plus de 400 Gardes-bœufs ont été observés entre février et novembre 2005. D’une manière plus modeste, en février 2006, les dépotoirs d’ordures ménagères de Sidi Rached recevaient chaque matin entre 30 et 50 hérons. De même, en mars 2006, plus de 100 individus venaient chercher chaque jour leur nourriture dans la décharge publique de Bentinha, et, pendant ce même mois, plus de 2000 fréquentaient le dépotoir d’Oued Smar. Les quelques décharges sauvages qui sont apparues en Mitidja, généralement à la sortie des agglomérations ou au bord des oueds, sont vite devenues des lieux de gagnage. En novembre 2006, celle de Biroutoua attirait journalièrement plus de 50 individus.

Enfin les milieux semi-ouverts tels que les vergers et les maquis et les marécages sont fréquentés 3 mois sur 12 seulement. C’est en février que les gardes-bœufs les
fréquentent le plus les milieux semi-ouverts (71 individus, 47,4 %), et en janvier les marécages (35,7 oiseaux, 53,9 %) (Tab. 27). De petites aires marécageuses sont apparues ça et là en dehors du marais de Réghaïa, du barrage de Hamiz et les oueds qui sillonnent la Mitidja, de petites aires marécageuses temporaires, sont apparues au cours de la dernière décennie. Dues au mauvais drainage des terres, elles attirent le héron garde-bœufs par dizaines, comme nous avons pu le constater en janvier 2006 autour de Birtouta et de Boufarik. Pendant la même période, c’étaient plus de 90 Gardes-bœufs qui fréquentaient les terres humides près d’Aïn Naâdja. Adaptable, ce héron peut fréquenter les marécages temporaires près des bidonvilles, comme les 10 individus observés à Semmar. Aux environs de Baraki, des Eucalyptus et de Cherarba il visite de petits plans ou flaques d’eau créés par l’extension anarchique des constructions de l’urbanisation sauvage. Près de Rouiba, dans la partie orientale de la Mitidja il fait de même dans les collections d’eau stagnante apparues à la suite de l’extension de la zone industrielle.

3.3. – Ecologie trophique de deux espèces d’oiseaux utiles

Les particularités des régimes alimentaires de deux espèces sont développées dans la présente étude. Ce sont deux oiseaux insectivores dont la Pie-grièche méridionale laquelle de par ses particularités éthologiques, mérite d’être prise en considération. La seconde espèce est un rapace diurne, l’Elanion blac qui retient également l’attention. Dans le présent paragraphe, le comportement trophique de ces deux prédateurs et la biologie de reproduction de *Lanius meridionalis* en relation avec l’alimentation sont présentés.

3.3.1. – Cas de la Pie grièche méridionale *Lanius meridionalis*

Les résultats obtenus sur le comportement trophique et sur la biologie de la reproduction de *L. meridionalis* parallèlement à son alimentation dans les stations de Ramadhnia et de Baraki sont présentés.

3.3.1.1. - Comportement trophique de *L. meridionalis*

Cette partie est basée sur l’analyse des pelotes de rejetion et sur la recherche des proies stockées au niveau des lardoires.

3.3.1.1.1. - Analyse des contenus des pelotes de rejetion de *L. meridionalis*

Le régime alimentaire de la Pie grièche méridionale est étudié par l’analyse de 102 régurgitats recueillies à Ramadhnia (42) et à Baraki (60). L’ensemble des espèces-proies
composant le menu de *Lanius meridionalis* sont exploitées dans les parties qui suivent.

3.3.1.1.1. – Richesse et abondance relative des espèces-proies ingérés par la Pie-grièche méridionale à Ramadhnia et à Baraki

Les espèces présentes dans les pelotes de rejetation de la Pie-grièche méridionale sont mentionnées dans le tableau 28.

Le total des espèces trouvées dans 102 régurgitats de la Pie-grièche méridionale est de 198. Mais la richesse la plus élevée est notée à Ramadhnia avec 146 espèces contre 124 espèces à Baraki (Tab. 26). Pourtant la richesse moyenne est plus forte à Baraki (s = 6,5) qu’à Ramadhnia (s = 4,6). Il est à mentionner que la somme des proies ingérées par ce Laniidae est de 665 à Ramadhnia et de 809 à Baraki.

Tableau 28 – Richesses et abondances relatives des espèces-proies trouvées dans les pelotes de rejetation de *Lanius meridionalis* recueillies à Ramadhnia et à Baraki entre
janvier et décembre 2006

A.R. % : Abondances relatives

Parmi les 24 catégories obtenues, les Coleoptera apparaissent les plus importants en nombre d’espèces (91). Les Hymenoptera occupent le second rang avec 28 espèces. Quant aux Orthoptera, ils se présentent avec une richesse égale à 22 espèces. Les autres catégories ont des richesses variant entre 1 et 11 espèces (Fig. 46).

Fig. 46 - Richesse en nombres d’espèces-proies de Lanius meridionalis par catégorie

Il est à souligner que sur l’ensemble des proies capturées par Lanius meridionalis la plupart des espèces dominantes sont notées à Baraki, exception faite pour Gryllidae sp. qui est fortement consommée à Ramadhnia avec 102 individus (15,3 %). Pour ce qui concerne les espèces mentionnées à Baraki celles qui sont les plus fréquemment capturées sont Gryllus sp avec 81 individus (10,01 %), Messor barbara avec 58 individus (7,2 %) et Lissoblemmus sp. avec 53 individus (6,6 %). D’autres espèces sont retrouvées à Baraki également en grands effectifs telles que Cataglyphis bicolor avec 41 individus (5,1 %) et Chilopoda sp ind. avec 39 individus (4,8 %) (Tab. 28). Il semble d’après les présents résultats que les insectes sont les plus fortement ingurgités. Mais Lanius meridionalis s’attaque aussi à d’autres types de proies invertébrées et vertébrées. Parmi les Invertébrés fortement ingérés par ce Laniidae, autres que les Insecta, les Myriapoda sont à mentionner surtout à Baraki avec 39 Chilopoda sp. (4,8 %). Il en est de même pour les Isopoda sp. avec 32 représentants (4,0 %) et pour les Aranea avec 23 individus dont Dysdera sp. (2,8 %). Pour ce qui concerne les proies vertébrées, les amphibiens sont consommés au nombre de 4 Discoglossus pictus (0,6 %) à Ramadhnia et de 5 individus (0,6 %) de la même espèce à Baraki. Les Reptilia avec l’espèce indéterminée Lacertidae sp. sont ingérés à Baraki avec 5 ind. (0,6 %) et avec Chalcides ocellatus avec 3 ind. (0,4 %). Il faut ajouter que les Mammalia telle que Mus spretus sont ingérés par la Pie-grèche méridionale. Cette espèce de souris est consommée avec 3 individus dans chacune des
deux stations soit 0,5 % à Ramadhnia et 0,4 % à Baraki. Enfin les Insectivora sont également dévorés par la Pie-grièche telle que la musaraigne musette *Crocidura russula* représentée par 3 proies (0,4 %) à Baraki.

Dans l’ensemble il ressort que la Pie-grièche méridionale capture de préférence des proies terrestres volumineuse et de poids importants comme les myriapodes, les isopodes, les araignées, les mollusques et les insectes coléoptères et grillons parmi les Invertébrés. De même *Lanius meridionalis* préfère s’attaquer aux petits rongeurs, aux lézards et aux batraciens, mais rarement aux oiseaux comme les petits passereaux en général parmi les Vertébrés. Quelle que soit l’occasion qui se présente au prédateur, celui-ci cible sa proie au sol afin de minimiser ses dépenses énergétiques durant les tentatives de chasse. Il est vraisemblable que même les rares passeriformes pris, sont surpris lorsqu’ils sont posés au sol.

3.3.1.1.1.2. – Variations mensuelles du nombre de proies de *Lanius meridionalis* par catégorie trophique et moyenne de proies par pelote

Au sein des 24 catégories de proies présentes dans le menu de la Pie-grièche méridionale à Ramadhnia et à Baraki, 5 sont des Vertébrés et 19 des Invertébrés. Les variations de leurs nombres par mois à Ramadhnia ainsi que les moyennes des effectifs de proies par pelote sont présentés dans le tableau 29.
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Totaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligocheta</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>Myriapoda</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Diplopoda</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Phalangida</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Solifugea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Aranea</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Acari</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Isopoda</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Malacostraca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Mantoptera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>82</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>128</td>
</tr>
<tr>
<td>Dermaptera</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Heteroptera</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Homoptera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>45</td>
<td>90</td>
<td>43</td>
<td>59</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>34</td>
<td>7</td>
<td>-</td>
<td>315</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>3</td>
<td>34</td>
<td>8</td>
<td>19</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>0</td>
<td>18</td>
<td>-</td>
<td>96</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Diptera</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Amphibia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Reptilia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Aves</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Mammalia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Insectivora</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Totaux</td>
<td>70</td>
<td>163</td>
<td>74</td>
<td>195</td>
<td>74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>43</td>
<td>25</td>
<td>-</td>
<td>665</td>
</tr>
<tr>
<td>Nbr. Pelotes anal.</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>42</td>
</tr>
<tr>
<td>Moy. proies / pel.</td>
<td>8,75</td>
<td>16,3</td>
<td>14,8</td>
<td>24,38</td>
<td>12,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10,5</td>
<td>21,5</td>
<td>25</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Nbr. Pelotes anal. : Nombre de pelotes analysées ; Moy. proies / pel. : Moyenne de proies par pelote ; - : Absence de pelotes

Dans la station de Ramadhnia, selon les mois les Orthoptera et les Coleoptera apparaissent les mieux représentés. Il est à souligner qu’à Ramadhnia le nombre le plus élevé de Coleoptera est noté en février avec 90 individus. Il est moindre en avril avec 59 individus. Pour les autres mois les Coleoptera ingérés par *Lanius meridionalis* sont moins représentés. Leurs effectifs se situent entre 7 en novembre et 45 en janvier. Parallèlement, le maximum des Orthoptera est mentionné plutôt en avril avec 82 proies. Cet effectif est plus modeste pour le reste des mois. Il est compris entre 1 en janvier, septembre et octobre et 25 en mai (Tab. 29). Il est à noter que le nombre de proies par catégorie et par mois est important en fonction du nombre de pelotes décortiquées. En effet, le nombre de proies le plus élevé, toutes espèces confondues est enregistré en avril avec 195 individus (29,3 %) obtenu à partir de 8 pelotes analysées. La moyenne des proies par pelote est de 24,4 en avril (Tab. 29). La valeur moyenne la plus faible est de
8,8 proies par pelote en janvier (N = 8 pelotes). Par ailleurs il est noté 25 proies dans une seule pelote en novembre.

Les variations des nombres de proies par catégorie et par mois à Baraki ainsi que les moyennes des effectifs de proies par pelote sont présentées dans le tableau 30.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Totaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligocheta</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>40</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Myriopoda</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Diplopoda</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Phalangiida</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Solifugia</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aranea</td>
<td>3</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acari</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Isopoda</td>
<td>0</td>
<td>17</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Malacostraca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mantopera</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>3</td>
<td>217</td>
<td>10</td>
<td>23</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermaptera</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Heteroptera</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Homoptera</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>7</td>
<td>130</td>
<td>10</td>
<td>22</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>176</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>2</td>
<td>95</td>
<td>16</td>
<td>44</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>171</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Diptera</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Amphibia</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Reptilia</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Aves</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mammalia</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Insectivora</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Totaux</td>
<td>18</td>
<td>558</td>
<td>60</td>
<td>117</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>809</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nbr. Pelotes anal. : Nombre de pelotes analysées ; Moy. proies / pel. : Moyenne de proies par pelote ; - - Absence de pelotes

Dans la station de Baraki, ce sont également les Orthoptera et les Coleoptera qui apparaissent les plus importants dans le régime alimentaire de la Pie-grièche. Les Orthoptera sont consommés fortement en mai avec 217 individus (Tab. 30). Par contre, pour le reste des mois ils sont très faiblement ingérés, notamment en août avec 23 individus et en octobre avec 16 individus. Il est à signaler que l’effectif le plus faible est mentionné en mars avec 3 individus seulement. Parallèlement, les Coleoptera se placent en second rang après les Orthoptera et sont le plus fortement représentés dans le menu.
de *Lanius meridionalis* en mai avec un effectif de 130 proies. Ils sont plus rares en août avec 22 proies. Cependant, les nombres des Coleoptera apparaissent les plus faible en mars et en octobre avec 7 individus chacun. Il faut ajouter que d’autres catégories sont bien représentées dans l’alimentation du Laniidae telle que celle des Hymenoptera dont le plus grand effectif est signalé en mai avec 95 individus. Ils sont moins importants en août avec 44 individus. Durant les autres mois, les effectifs d’hyménoptères fluctuent entre 2 en mars et 16 individus en juillet. Cependant le nombre de proies le plus élevé pour l’ensemble des catégories est noté en mai avec 558 individus (69,0 %) contenus dans 39 pelotes analysées. La moyenne des proies par pelote est de 14,3 en mai (Tab. 30). La valeur moyenne la plus faible est de 4,6 proies par pelote en juillet (*N* = 13 pelotes). Mais la plus élevée est mentionnée en août avec 58,2 proies par pelote (*N* = 2 pelotes). Il est utile de mentionner que l’importance numérique des proies de la Pie-grèche méridionale surtout en mai s’explique par le fait que le nombre de pelotes analysées est élevé. Il faut rappeler que bien que la collecte des pelotes de rejetation est réalisée d’une manière régulière chaque mois, les nombres de pelotes trouvées sur le terrain ne sont pas les mêmes. Effectivement à Baraki, pendant la période de reproduction les pelotes sont récoltées au dessous des arbres où le prédateur a installé son nid, alors qu’en dehors de celle-ci la recherche de régurgitats devient plus difficile car l’oiseau multiplie ses sites de perchage, souvent à des hauteurs importantes. Bien plus, fréquemment les pelotes rejetées s’effritent lorsqu’elles tombent avant d’atteindre le sol.

3.3.1.1.1.3. – Principales espèces-proies consommées mensuellement par la Pie-grèche méridionale à Ramadhnia et à Baraki et moyenne des espèces par pelote

Les principales espèces-proies les plus fréquentes dans le menu de la Pie-grèche méridionale à Ramadhnia et à Baraki ainsi que la moyenne des espèces par pelote sont placées dans le tableau 31.

Tableau 31 – Moyennes des proies par pelote et par mois pour les principales espèces consommées par *Lanius meridionalis* à Ramadhnia

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopoda sp. ind.</td>
<td>0,29</td>
<td>0,18</td>
<td>0,20</td>
<td>0,38</td>
<td>0,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,50</td>
<td>0,50</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Gryllidae sp. ind.</td>
<td>0</td>
<td>0,55</td>
<td>0</td>
<td>9,25</td>
<td>3,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Macrothorax morbil.</td>
<td>2</td>
<td>0,45</td>
<td>0,40</td>
<td>0,25</td>
<td>0,17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>0,50</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ocyopus olens</td>
<td>0,57</td>
<td>0,45</td>
<td>0,20</td>
<td>0,13</td>
<td>0,17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bothynoderes sp.</td>
<td>0</td>
<td>0,09</td>
<td>0,20</td>
<td>0,63</td>
<td>0,50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,50</td>
<td>0,50</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Messor barbarica</td>
<td>0</td>
<td>0,55</td>
<td>0</td>
<td>1</td>
<td>0,17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de pelotes

Dans la station de Ramadhnia, il est tenu compte des 6 espèces les plus importantes en nombres parmi 146 espèces trouvées dans 42 pelotes de rejetation de *Lanius meridionalis* (Tab. 31). Sur le plan effectif, c’est l’orthoptère *Gryllidae sp. ind.* qui est le mieux représenté avec des moyennes par pelote égales à 9,3 en avril et 3,7 proies en
mai. Pour les autres mois cette espèce est absente dans les régurgitats exception faite en février où la moyenne ne dépasse pas 0,6 individu. Il est à souligner que la fourmi moissonneuse *Messor barbaro* est présente en novembre avec 18 proies dans une seule pelote seulement. Pour ce qui concerne la présence des espèces en fonction des mois, le carabe *Macrothorax morillosus* est signalé dans le régime alimentaire du Laniidae presque tous les mois, soit 7 sur 8. Ce coléoptère est consommé fortement en janvier et en septembre avec une moyenne de 2 proies par pelote durant chacun des deux mois (Tab. 31). La moyenne la plus faible est notée en mai avec 0,2 proie. Il faut citer également l’importance relative de l’espèce indéterminée du cloporte désigné par Isopoda sp. ind. dans l’alimentation de la Pie-grièche. En effet les valeurs moyennes de cette espèce varient entre 0,2 en février et 0,7 en mai.

Les moyennes des proies par pelote et par mois pour les principales espèces consommées par *Lanius meridionalis* à Baraki sont consignées dans le tableau 32.

Tableau 32 – Moyennes des proies par pelote et par mois pour les principales espèces ingérées par *Lanius meridionalis* à Baraki

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilopoda sp. ind.</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,85</td>
<td>-</td>
<td>0,2</td>
<td>0,2</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Isopoda sp. ind.</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,46</td>
<td>-</td>
<td>1,4</td>
<td>0,3</td>
<td>-</td>
<td>-</td>
<td>0,8</td>
<td>-</td>
</tr>
<tr>
<td>Odontura algerica</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>0,38</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Gryllidae sp. ind.</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0,97</td>
<td>-</td>
<td>0</td>
<td>0,2</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Lissoblemmus sp.</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1,36</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Macrothorax morillo</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,49</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ocytus olens</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,33</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>Bothynoderes sp.</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>0,36</td>
<td>-</td>
<td>0,2</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Messor barbara</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,49</td>
<td>-</td>
<td>1,2</td>
<td>2,8</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Cataglyphis bicolor</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0,79</td>
<td>-</td>
<td>0,8</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
<td>0,2</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de pelotes

Dans la station de Baraki, 10 espèces-proies parmi 124 trouvées sont retenues compte-tenu de l’importance de leurs fréquences relatives dans 60 pelotes décortiquées de *Lanius meridionalis*.

Ces 10 espèces sont présentes dans l’ensemble des pelotes surtout en mai. C’est le cas pour l’Orthoptera *Lissoblemmus* sp. qui se place au premier rang avec une moyenne de 1,4 individu par pelote (Tab. 32). Il est suivi par l’espèce indéterminée Gryllidae sp. ind. avec 1,0 proie, le Chilopoda sp. ind. avec 0,9 proie par pelote et la fourmi prédateur *Cataglyphis bicolor* avec 0,8 individu. Les autres espèces-proies consommées par le prédateur présentent des valeurs moyennes qui se situent entre 0,3 pour *Ocytus olens* et 0,5 pour *Macrothorax morillosus* et pour *Messor barbaro*. Au cours des autres mois, l’espèce indéterminée Isopodasp. ind. est notée en juin avec 1,4 et *Messor barbaro* en juillet avec 2,8 proies par pelote. Il est à souligner qu’en mars *Odontura algerica* (N = 2) et *Bothynoderes* sp. (N = 3) sont assez importants de l’alimentation de la Pie-grièche méridionale. Seulement ces deux espèces-proies ne sont mentionnées que dans une seule pelote (Tab. 32).
En effet, l’importance des espèces-proies ingérées par *Lanius meridionalis* durant le mois de mai coincide avec sa période de reproduction. Cet insectivore s’attaque à diverses proies ayant un poids important afin de nourrir les jeunes oisillons depuis l’éclosion jusqu’à l’envol.

3.3.1.1.4. – Classes de tailles des espèces-proies ingurgitées par la Pie-grièche méridionale

Les mensurations de la longueur des différentes espèces-proies composant le régime alimentaire de la Pie-grièche sont estimées en mm et regroupées par classe de tailles. Les résultats des estimations de taille à Ramadhnia et à Baraki sont placés dans le tableau 33.

Il est à souligner que les proies ayant des longueurs de plus de 20 mm sont modérément représentées dans le menu de la Pie-grièche méridionale à Baraki comme à Ramadhnia. Les espèces incluses dans ces catégories de tailles sont parmi les invertébrés, *Ocyopus olens*, *Macrothorax morbillosus*, *Oedipoda coerulescens*, *Chilopoda* sp. ind., *Calliptamus* sp. et *Gymnopleurus* sp.2 et au sein des vertébrés *Discoglosus pictus* et *Crocidura russula*. Il faut noter que les proies qui mesurent plus de 50 mm sont rares telles que *Anacridium aegyptium* et *Gryllotalpa gryllotalpa*. Il est très utile de signaler les proies de tailles plus grandes, même si leurs effectifs sont négligeables. En effet, à Ramadhnia 11 proies mesurent entre 55 et 70 mm (A.R. = 1,8 % < 2 x m) comme *Mus spretus* et 4 entre 100 et 140 mm (A.R. = 0,6 % < 2 x m) telle que l’espèce indéterminée Fringillidae sp. ind.et *Phylloscopus* sp. Quant à Baraki, les proies dont les tailles sont comprises entre 55 et 70 mm sont à peine au nombre de 5 (A.R. = 0,7 % < 2 x m) comme *Tarentola mauritanica* et *Mus spretus*. De même seulement 6 proies mesurent entre 100 et 150 mm de long (A.R. = 0,8 % < 2 x m). C’est le cas de l’espèce indéterminée Chiroptera sp. ind. et de *Chalcides ocellatus* (Fig. 47 a et b). Probablement le prédateur s’attaque aux proies de petites tailles lorsque celles qui sont volumineuses deviennent rares. Si une proie plus grande et de poids plus important se présente à lui, le prédateur préfère la capturer de manière à dépenser le moins d’énergie. Pour *Lanius meridionalis*, une grosse proie comme *Passer* sp. qui pèse 26 g. ou un rongeur telle que *Mus spretus* dont le poids est de 19 g. correspondent entre 63 et 87 insectes Tenebrionidae *Timarcha* sp. dont chaque individu possède une masse égale à 0,3 gramme. Il est à signaler que *Lanius meridionalis* se nourrit de proies beaucoup plus grosses comme *Sturnus vulgaris*. L’individu noté en novembre par un habitant de la ferme d’El Aïchi (Baraki) a été une proie facile car il s’agit d’un Étourneau déjà blessé par un Faucon crécerelle avant d’être attaqué par la Pie-grièche méridionale. Un Étourneau sansonnet pèse 67 grammes en moyenne.
Il semble exister une relation entre le nombre de proies dans une pelote et la taille de la plus grosse proie présente dans cette même pelote. Il est vraisemblable que la Pie-grèche va s’arrêter momentanément d’ingurgiter de nouvelles proies si elle venait à capturer une proie volumineuse. Afin de mettre en évidence cette hypothèse une analyse de corrélation entre le nombre de proies, pelote par pelote et la taille maximale de la proie ingérée est effectuée (Fig. 48a et b). Le coefficient de détermination R^2 est de 0,0088 à Ramadhnia contre 0,0325 à Baraki avec des probabilités non
Fig. 47 – Longueurs des proies ingérées par Lanius meridionalis par classe de tailles

<table>
<thead>
<tr>
<th>N°</th>
<th>Noms</th>
<th>Nb. porte</th>
<th>Nb. jours</th>
<th>Nb. jours °1</th>
<th>% Edulcoré</th>
<th>% la pelote</th>
<th>% inorganique</th>
<th>% inorganique °1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baraki</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>100 %</td>
<td>0 %</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ramadhnia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 %</td>
<td>0 %</td>
<td>0 %</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 48 – Régressions entre les tailles maximales des proies en mm et le nombre de proies par pelote

significatives à Ramadhnia (P = 0,5547) et à Baraki (P = 0,1678). On peut expliquer, que la Pie-grièche méridionale capture des proies de taille moyenne de 17 mm comme elle se nourrit également de proies de petites petites (9 à 10 mm) pour compléter son menu. Mais, il faut ajouter que Lanius meridionalis s’attaque de préférence à des proies beaucoup plus grosses (60 à 150 mm) lorsque l’occasion se présente.

3.3.1.1.5. – Indices de diversité de Shannon-Weaver (H’) des espèces-proies, pelote par pelote à Ramadhnia et à Baraki

Une pelote de rejet pour Lanius meridionalis est considérée comme un repas.
L’indice de diversité de Shannon-Weaver est calculé par rapport aux pelotes de janvier à décembre 2006. Les valeurs de cet indice à Ramadhnia sont présentées dans le tableau qui suit.

<table>
<thead>
<tr>
<th>Pelotes</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° 1</td>
<td>2,84</td>
<td>2,97</td>
<td>3,91</td>
<td>3,91</td>
<td>3,28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,97</td>
<td>2</td>
<td>1,64</td>
<td>-</td>
</tr>
<tr>
<td>n° 2</td>
<td>2,78</td>
<td>3,1</td>
<td>3,28</td>
<td>1,78</td>
<td>2,28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 3</td>
<td>3,66</td>
<td>3,18</td>
<td>3,17</td>
<td>3,09</td>
<td>1,87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 4</td>
<td>1,55</td>
<td>3,59</td>
<td>4,35</td>
<td>3,17</td>
<td>2,82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 5</td>
<td>1,96</td>
<td>3,12</td>
<td>3,87</td>
<td>2,85</td>
<td>2,58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 6</td>
<td>2,32</td>
<td>3,02</td>
<td>-</td>
<td>3,62</td>
<td>3,12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 7</td>
<td>2,25</td>
<td>3,98</td>
<td>-</td>
<td>2,75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 8</td>
<td>-</td>
<td>3,12</td>
<td>-</td>
<td>3,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 9</td>
<td>-</td>
<td>1,61</td>
<td>-</td>
</tr>
<tr>
<td>n° 10</td>
<td>-</td>
<td>3,32</td>
<td>-</td>
</tr>
<tr>
<td>n° 11</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de pelotes

Dans la station de Ramadhnia, les valeurs de l’indice de diversité de Shannon-Weaver sont relativement élevées (Tableau 34, Fig. 49a). De ce fait, par rapport aux 42 valeurs de H’ obtenues, 24 sont supérieures ou égales à 3 bits (F = 57, 1 %) dont la plus élevée est notée en mars avec 4,4 bits et la plus faible en janvier avec 1,6 bits. Ces résultats expliquent la diversité en espèces-proies dans le menu de la Pie-grièche méridionale.

Fig. 49 – Variations des valeurs de l’indice de diversité de Shannon-Weaver en fonction des pelotes de Lanius meridionalis
Les valeurs de l’indice de diversité de Shannon-Weaver calculées en fonction des pelotes à Baraki sont placées dans le tableau 35.

<table>
<thead>
<tr>
<th>Pelotes</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° 1, 2, 3</td>
<td>-</td>
<td>-</td>
<td>3,46</td>
<td>-</td>
<td>3,03</td>
<td>0,91</td>
<td>2,24</td>
<td>-</td>
<td>2,94</td>
<td>2,28</td>
<td>-</td>
<td>3,57</td>
</tr>
<tr>
<td>n° 4, 5, 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,27</td>
<td>0,92</td>
<td>2,82</td>
<td>-</td>
<td>1,95</td>
<td>2,75</td>
<td>-</td>
<td>2,92</td>
</tr>
<tr>
<td>n° 7, 8, 9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,96</td>
<td>1,96</td>
<td>2,32</td>
<td>-</td>
<td>1,79</td>
<td>2,22</td>
<td>-</td>
<td>3,17</td>
</tr>
<tr>
<td>n° 10, 11, 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,92</td>
<td>1,75</td>
<td>2,29</td>
<td>-</td>
<td>2,03</td>
<td>1,58</td>
<td>-</td>
<td>2,74</td>
</tr>
<tr>
<td>n° 13, 14, 15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,58</td>
<td>2,93</td>
<td>2,25</td>
<td>-</td>
<td>2,55</td>
<td>3,39</td>
<td>-</td>
<td>1,37</td>
</tr>
<tr>
<td>n° 16, 17, 18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,32</td>
<td>3,18</td>
<td>2,41</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 19, 20, 21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,79</td>
<td>2,78</td>
<td>3,18</td>
<td>-</td>
<td>-</td>
<td>3,06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 22, 23, 24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,66</td>
<td>3,85</td>
<td>3,44</td>
<td>-</td>
<td>-</td>
<td>2,81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 25, 26, 27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,87</td>
<td>3,55</td>
<td>2,68</td>
<td>-</td>
<td>-</td>
<td>1,12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 28, 29, 30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,34</td>
<td>2,28</td>
<td>3,03</td>
<td>-</td>
<td>-</td>
<td>1,92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 31, 32, 33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,64</td>
<td>2,75</td>
<td>1,56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 34, 35, 36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,92</td>
<td>2,85</td>
<td>3,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 37, 38, 39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,58</td>
<td>1,7</td>
<td>3,58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de pelotes

Dans la station de Baraki, les valeurs de l’indice de diversité de Shannon-Weaver sont assez importantes par rapport à celle de Ramadhnia (Tab. 35 ; Fig. 49b). De ce fait sur un total de 60 valeurs de H’ obtenues, seulement 18 sont supérieures à 3 bits (F = 30 %). Il faut ajouter que 15 valeurs de H’ sont inférieures à 2 bits (F = 25 %). Le reste des valeurs de H’ se situent entre 2 et 3 bits (F = 45 %). Il est à signaler que c’est en mai que les valeurs extrêmes de l’indice de diversité de Shannon-Weaver sont mentionnées avec 3,85 bits pour la plus élevée et 0,9 bits pour la plus basse. En général les valeurs de H’ obtenues dans les deux stations sont comparables entre elles. Tout au plus il faut rappeler que le nombre des espèces présentes qui font partie du régime alimentaire de *Lanius meridionalis* à Ramadhnia est plus élevé qu’à Baraki. C’est un point qui mériterait d’être approfondi ultérieurement dans un autre cadre d’étude.

3.3.1.1.1.6. – Indice d’équirépartition (E) des espèces-proies, pelote par pelote à Ramadhnia et à Baraki

Les résultats du calcul de l’indice d’équirépartition des espèces-proies, pelote par pelote ramassée durant la période allant de janvier jusqu’en décembre 2006 à Ramadhnia sont placés dans le tableau36.

<table>
<thead>
<tr>
<th>Tableau 36</th>
<th>- Valeurs de l’indice d’équirépartition des espèces-proies contenues dans les pelotes ramassées à Ramadhnia de janvier à décembre 2006</th>
</tr>
</thead>
</table>
- : Absence de pelotes

Les résultats de l’indice d’équirépartition obtenus à Ramadhnia révèlent que l’ensemble des valeurs tendent vers 1 exception faite pour avril où la valeur de E est égale à 0,4 notée pour la pelote n° 25 (Tab. 36 ; Fig. 50a). Effectivement au cours de l’année 2006 *Lanius meridionalis* s’est comporté le plus souvent en prédateur généraliste, se nourrissant de proies de différentes espèces. Il est à noter en particulier le cas de la pelote n° 27 (E = 1) (Fig. 50a) dans laquelle 8 espèces consommées sont présentes à raison d’un seul exemplaire par espèce : *Odontura algerica*, *Gryllotalpa gryllotalpa*, *Anacridium aegyptium*, *Acinopous sp.*, *Scleron armatum*, *Baridius sp.*, *Formicidae sp.* ind., *Discoglossus pictus* et *Mus* sp. Par ailleurs, la Pie-grièche se manifeste très rarement en tant que prédateur opportuniste correspondant à un seul cas signalé en avril. En effet dans la pelote n° 25 sur 90 proies ingérées 67 appartiennent à la même espèce de grillon indéterminée (*Gryllidae sp.* ind.; A.R. % = 75, 5 %), les autres proies se répartissant entre 16 autres espèces présentes dans la même pelote (Fig. 50a). Ce cas implique une valeur de E égale à 0,44. Compte tenu du nombre élevé de proies l’oiseau a dû dépenser une forte quantité d’énergie pour les capturer. Cette activité intense coïncide avec la nidification, période durant laquelle il évite de trop s’éloigner du nid. Il réduit ainsi son rayon d’action et les chances de trouver de plus grosses proies.

Dans la station de Baraki, les valeurs de l’indice d’équirépartition des espèces-proies par pelote sont mentionnées dans le tableau 37.

Dans la station de Baraki, les valeurs de E se rapprochent à celles obtenus à Ramadhnia. Au niveau de presque toutes les pelotes les valeurs de l’indice d’équirépartition se rapprochent de 1, sauf dans deux cas signalés, l’un en mai et l’autre en août (Tab. 37 ; Fig. 50b).

<table>
<thead>
<tr>
<th>Pelotes</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° 1</td>
<td>0,9</td>
<td>0,98</td>
<td>1</td>
<td>0,98</td>
<td>0,99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,94</td>
<td>0,86</td>
<td>0,55</td>
<td>-</td>
</tr>
<tr>
<td>n° 2</td>
<td>0,88</td>
<td>0,98</td>
<td>0,99</td>
<td>0,44</td>
<td>0,88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0,88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 3</td>
<td>0,99</td>
<td>0,96</td>
<td>1</td>
<td>0,97</td>
<td>0,62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 4</td>
<td>0,78</td>
<td>0,9</td>
<td>0,99</td>
<td>1</td>
<td>0,94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 5</td>
<td>0,84</td>
<td>0,98</td>
<td>0,99</td>
<td>0,9</td>
<td>1,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 6</td>
<td>1</td>
<td>0,82</td>
<td>-</td>
<td>0,98</td>
<td>0,98</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 7</td>
<td>0,97</td>
<td>0,97</td>
<td>-</td>
<td>0,92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 8</td>
<td>-</td>
<td>0,98</td>
<td>-</td>
<td>0,92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 9</td>
<td>-</td>
<td>0,62</td>
<td>-</td>
</tr>
<tr>
<td>n° 10</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>n° 11</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 50 – Variations des valeurs de l’indice d’équirépartition en fonction des pelotes de *Lanius meridionalis*

<table>
<thead>
<tr>
<th>Pelotes</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° 1, 2, 3</td>
<td>-</td>
<td>-</td>
<td>0,97</td>
<td>-</td>
<td>0,96</td>
<td>0,46</td>
<td>0,71</td>
<td>-</td>
<td>0,89</td>
<td>0,88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 4, 5, 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,68</td>
<td>0,58</td>
<td>0,85</td>
<td>-</td>
<td>0,84</td>
<td>0,98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 7, 8, 9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,96</td>
<td>0,84</td>
<td>1</td>
<td>-</td>
<td>0,9</td>
<td>0,86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 10, 11, 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,96</td>
<td>0,88</td>
<td>0,76</td>
<td>-</td>
<td>0,79</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 13, 14, 15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0,82</td>
<td>0,97</td>
<td>-</td>
<td>0,91</td>
<td>0,98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 16, 17, 18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0,96</td>
<td>0,93</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 19, 20, 21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,97</td>
<td>0,93</td>
<td>0,96</td>
<td>-</td>
<td>0,97</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 22, 23, 24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,99</td>
<td>0,99</td>
<td>0,93</td>
<td>-</td>
<td>0,89</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 25, 26, 27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,91</td>
<td>0,99</td>
<td>0,81</td>
<td>-</td>
<td>0,48</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 28, 29, 30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,93</td>
<td>0,76</td>
<td>0,96</td>
<td>-</td>
<td>0,96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 31, 32, 33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,94</td>
<td>0,87</td>
<td>0,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 34, 35, 36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,96</td>
<td>0,9</td>
<td>0,95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n° 37, 38, 39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0,73</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

: Absence de pelotes

Evidemment dans la pelote n° 3 (E = 0,46) 18 proies sont présentes dont 15 parmi elles appartiennent à une seule espèce indéterminée Gryllidae sp. ind. (A.R. = 83,3 %). Chacune des 3 autres proies fait partie d’une espèce à part comme l’araignée indéterminée Dysderidae sp. ind., le grillon *Lissoblemmus* sp. et la fourmi *Cataglyphis bicolor*. Il en est de même pour la pelote n° 54 (E = 0,48) dans laquelle la fourmi moissonneuse *Messor barbarus* apparaît fortement ingérée par la Pie-grièche méridionale
avec 16 individus (A.R. = 80 %) sur 20 proies. Les autres insectes capturés sont une espèce indéterminée désignée par Harpalidae sp. ind., Hister sp., Larinus sp. 1, et Tapinoma simrothi. En effet à Baraki comme à Ramadhnia, Lanius meridionalis se comporte davantage en prédateur généraliste que spécialiste.

3.3.1.1.7. – Indice de fragmentation de quelques espèces-proies composant le menu de la Pie-grièche méridionale

L’indice de fragmentation est employé pour quelques espèces-proies d’Invertébrés entrant dans la composition du menu de la Pie-grièche méridionale. Les résultats concernant cet indice sont illustrés dans les figures 51, 52 et 53.

Chez les Coleoptera neuf principales espèces sont étudiées, soit Macrothorax morbillosus, Othonus sp.1, Rhizotrogus sp., Geotrupes sp., Gymnopleurus sp.1, Ocyopus olens, Meloidae sp. ind., Timarcha sp. et Bothynoderes sp. Les éléments les plus brisés de toutes les espèces confondues sont les ensembles des sternites et des tergites abdominaux (i.f. = 97,3 %), les élytres (i.f. = 89,8 %) et les thorax (i.f. = 89,5 %). Par contre, les parties les moins fragmentés sont les mandibules (i.f. = 4,1 %) et les tibias (i.f. = 4,4 %) Il est à noter que le trochanter n’a subi aucune fragmentation (i.f. = 0 %)
Fig. 51 – Taux de fragmentation des éléments sclerotinisés des proies composant le menu de Lanius meridionalis par groupe d’ordre

Tê. : Têtes ; Ma. : Mandibules ; Th. : Thorax ; Ely. : Elytres ou Ailes ; Fé. : Fémurs ;
Ti. : Tibias ; Est. : Ensembles des sternites et des tergites abdominaux ;
Co. : Coxas ; Ta. : Tarses ; Tr. : Trochanters
Fig. 52 – Taux de fragmentation des éléments sclérotinisés des espèces-proies de Coleoptera les plus fréquente dans le menu de Lanius meridionalis

Té. : Têtes ; Ma. : Mandibules ; Th. : Thorax ; Ely. : Elytres ou Ailes ; Fé. : Fémurs ;
Ti. : Tibias ; Est. : Ensembles des sternites et des tergites abdominaux ;
Co. : Coxas ; Ta. : Tarses ; Tr. : Trochanters
Fig. 53 – Taux de fragmentation des éléments sclériotisés des espèces-prièes d’Hymenoptera et d’Orthoptera les mieux représentées dans le menu de Lanius meridionalis

Tê. : Têtes ; Ma. : Mandibules ; Th. : Thorax ; Ely. : Elytres ou Ailes ; Fé. : Fémurs ;
Ti. : Tibias ; Est. : Ensembles des sternites et des tergites abdominaux ;
Co. : Coxas ; Ta. : Tarses ; Tr. : Trochanters

(FIG. 51a). Pour ce qui concerne les Hymenoptera les taux de fragmentation atteignent 100 % pour les élytres et ailes et les ensembles des sternites et des tergites abdominaux. Les fémurs et les trochanters sont les moins brisés avec respectivement 2,3 et 0 % (FIG. 51b). Pour les Orthoptera, quatre parties des corps sont totalement désagrégées, soit les têtes, les thorax, les ailes et les tibias. Par contre les ensembles des sternites et des tergites abdominaux, les coxas, les tarses et les trochanters restent intacts (i.f. = 0 %) (FIG. 51c).

Au sein des neuf espèces de Coleoptera étudiées, le Staphylinidae Ocybus olens a subi un taux de fragmentation le plus élevé avec 100 % notamment au niveau des têtes, des thorax et des ensembles des sternites et tergites abdominaux. Par contre les
mandibules, les tibias, les tarses et les trochanters demeurent intacts (Fig. 52b). Également pour le Scarabeidae Gymnopleurus sp.1, les têtes et les ensembles de sternites et tergites abdominaux sont fortement détériorés (i.f. = 100 %) alors que les mandibules et les trochanters sont demeurés intacts (i.f. = 0 %). Parallèlement pour le Carabidae Macrotorax morbillosus, les thorax et les ensembles des sternites et tergites abdominaux sont totalement brisés (i.f. = 100 %) tout comme pour Ocypus olens et Gymnopleurus sp.1 (Fig. 52a). Cependant les espèces Geopruples sp. et Timarcha sp ne présentent qu'un seul élément sclerotinisé fragmenté (i.f. = 100 %), soit les ensembles des sternites et des tergites abdominaux pour Geopruples sp. et les Thorax pour Timarcha sp. (Fig. 52b et c).

Pour ce qui concerne les Hymenoptera deux espèces sont prises en considération. L'une d'elles est Vespa germanica laquelle apparaît fortement fragmentée avec un taux de 100 % pour les thorax, les ailes et les ensembles des sternites et tergites abdominaux (Fig. 53a). Cependant les fémurs, les coxas, les tarses et les trochanters sont restés intacts (i.f. = 0 %). Pour la deuxième espèce Messor barbara, ce sont les mandibules et les ensembles des sternites et des tergites abdominaux qui sont les plus brisés (i.f. = 100 %) (Fig. 53a).

Enfin au sein des Orthoptera, deux espèces retiennent l'attention. L'espèce indéterminée Acrididae sp. ind. présente un fort taux de bris au niveau des têtes (i.f. = 100 %), des ailes (i.f. = 100 %), des fémurs (i.f. = 100 %), des tibias (i.f. = 100 %) et des mandibules (i.f. = 83,4 %). Les autres types de pièces sclerotinisées demeurent intacts (Fig. 53b). Pour Gryllidae sp., les têtes, les thorax, les ailes et les tibias sont fragmentés à 100 %, mais les mandibules sont peu brisées (i.f. = 33,3). Les autres parties sont mieux conservées (Fig. 53b).

3.3.1.1.8. – Analyse de la variance (ANOVA)

L'analyse de la variance est appliquée aux principales espèces-proies dévorées par la Pie-grièche méridionale à Ramadhnia et à Baraki. L'objectif de cette méthode consiste à vérifier s'il existe une différence significative entre les espèces-proies trouvées dans les pelotes de rejetion du Laniidae. Les résultats de cette analyse sont regroupés dans les tableaux 36 et 38.

<table>
<thead>
<tr>
<th>Données de variances</th>
<th>Somme des carrés.</th>
<th>Degré de liberté</th>
<th>Moyenne des carrés</th>
<th>F. calculé</th>
<th>Probabilité</th>
<th>Valeur critique F (théorique)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre groupe</td>
<td>19,9795918</td>
<td>12</td>
<td>1,66496599</td>
<td>3,36070768</td>
<td>0,00468274</td>
<td>2,14792623</td>
</tr>
<tr>
<td>A l'intérieur des groupes</td>
<td>12,8809524</td>
<td>26</td>
<td>0,49542125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaux</td>
<td>32,8605442</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Ramadhnia, l'analyse de la variance appliquée aux principales espèces-proies dévorées par la Pie-grièche méridionale montre que la valeur de F calculée est supérieur à celle de F théorique (Tab. 38), ce qui implique qu'il y a une différence significative entre les nombres d'individus présents dans les différentes pelotes de rejetion. Il est à noter que la probabilité p est égale à 0,0047 et donc inférieure à 0,05.
Il est à noter qu’à Baraki, il existe une différence significative entre les principales espèces-proies consommées par *Lanius meridionalis* dont la valeur de F calculé est largement supérieure à celle de F théorique (Tab.39). Il faut rappeler que la probabilité p est égale à 0,0001 et donc inférieure à 0,05

3.3.1.1.2. – Proies stockées au niveau des lardoires

Dans un premier temps il semble intéressant d’établir la liste des espèces-proies retrouvées au niveau des lardoires au cours de chaque mois de l’année 2006. Puis dans un second temps une réflexion est faite sur la stratégie trophique de la Pie-grêche méridionale en relation avec la délimitation territoriale.

3.3.1.1.2.1. – Espèces-proies retrouvées au niveau des lardoires au cours de chaque mois de l’année 2006

Les différentes proies récupérées au niveau des lardoires sont classées dans le tableau 40.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Effectifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilopoda sp. ind.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Macrothorax morbillosus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Geotrupes sp.</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Silpha granulata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bombus sp.</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Discoglossus pictus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Chalcides ocellatus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mus spretus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Totaux</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Richesse totale (S = 8)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

- : Absence de nouvelles proies

Dans les lardoires ou garde-mangers de *Lanius meridionalis*, nous avons signalé entre la période allant de mars à mai et d’août à octobre, la présence de 8 espèces avec un effectif de 15 individus (Tab. 40). Il est à souligner qu’à Ramadhnia parmi les 15 proies (S = 8), l’espèce indéterminée Chilopoda sp. ind. est dominante au niveau des lardoires (N = 5 ; A.R. = 33,3 %). Cette espèce de Myriapoda et signalée en mai (N = 1), en septembre (N = 2) et en octobre (N = 2). Également trois espèces sont notées en 2
exemplaires chacune tel que le Bourdon (*Bombus* sp.) en mars et en mai. Cependant le Discoglosse peint *Discoglossus pictus* et la souris *Mus spretus* sont mentionnés en septembre et en octobre. Les autres espèces-proies sont présentes chacune avec un seul individu telles que *Macrothorax morbillosus* (avril), *Geotrupes* sp. (mars), *Silpha granulata* (avril) et *Chalcides ocellatus* (août) (Tab. 40).

Dans la station de Baraki, les espèces-proies piquées sur les rameaux pointus de l’olivier sont mentionnées dans le tableau 41.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilopoda sp. ind.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Erithacus rubecula</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de proies

Il est noté à Baraki seulement deux espèces-proies dont l’espèce indéterminée Chilopoda sp. ind. (N = 1) mentionnée en août et le rouge-gorge familier *Erithacus rubecula* (N = 1) vu en octobre (Tab.41). Il est utile de signaler que presque toutes les espèces-proies identifiées au niveau des lardoires sont retrouvées dans les régurgitats du Laniidae, exceptés deux cas observés l’un à Ramadhnia et l’autre à Baraki. Effectivement à Ramadhnia, le reptile *Chalcides ocellatus* est présent dans les lardoires mais il est absent dans les pelotes. Il faut rappeler que cette espèce de lézard est signalée dans les régurgitats recueillis dans la première station, celle de Baraki (Tab. 28). Pour ce qui concerne le deuxième cas, *Erithacus rubecula* n’est pas observé dans l’ensemble des pelotes analysées pourtant il a été retrouvé à Baraki, accroché sur un petit rameau pointu d’olivier (octobre). Apparemment ce Turdidae venait d’être capturé le jour même et piqué dans le lardoire d’où il a été récupéré à l’état frais par nos soins, comprenant une partie du corps y compris la queue et les pattes. La tête de l’oiseau-proie a été ramassée sur le sol au dessous du lardoire.

3.3.1.2.2. – Stratégie trophique de la Pie-grièche méridionale dans la délimitation territoriale

Les proies de la Pie-grièche méridionale sont retrouvées soient placés sur du fil barbelé au niveau du grillage comme à Ramadhnia, soit empalées sur de petits rameaux pointus d’arbres fruitiers (*Olea europaea*) comme à Baraki. Les quelques exemples de dépouilles d’invertébrés et de vertébrés illustrés dans la figure 54 renseignent sur le comportement alimentaire du Laniidae. De ce fait, il semble que *Lanius meridionalis* choisit de grosses proies sur son territoire de chasse qu’il installe sur ses lardoires pour attirer l’attention d’autres prédateurs. Généralement la pie-grièche méridionale avant d’accrocher sa proie, en ingère un fragment ou une partie du corps de sa victime (Fig. 54). Les proies collectées à la fin de chaque mois sont réparties entre 12 classes de taille qui sont placées dans le tableau 42.
<table>
<thead>
<tr>
<th>Numéros des proies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille (mm)</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>35</td>
<td>40</td>
<td>42</td>
<td>45</td>
<td>70</td>
<td>170</td>
</tr>
<tr>
<td>Effectifs</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A.R. (%)</td>
<td>6,67</td>
<td>6,67</td>
<td>13,33</td>
<td>13,33</td>
<td>6,67</td>
<td>6,67</td>
<td>6,67</td>
<td>6,67</td>
<td>6,67</td>
<td>13,33</td>
<td>13,33</td>
<td>6,67</td>
</tr>
</tbody>
</table>

A.R. (%) : Abondances relatives

Généralement les proies accrochées au niveau des lardoires sont relativement grandes par rapport à celles trouvées dans les régurgitats, comme c’est le cas des vertébrés *Mus spretus* (70 mm) et *Chalcides ocellatus* (170 mm) notés à Ramadhnia. Parmi les espèces invertébrées nous avons *Bombus sp.* (19 mm), *Macrothorax morillosus* (28 mm) et l’espèce

Fig. 54 – Proies piquées par la Pie-grièche méridionale sur du fil barbelé au niveau des lardoires (Ramadhnia) durant l’année 2006 (Original)

Chalcides ocellatus (170 mm) notés à Ramadhnia. Parmi les espèces invertébrées nous avons *Bombus sp.* (19 mm), *Macrothorax morillosus* (28 mm) et l’espèce
indéterminée Chilopoda sp. ind. qui atteint 45 mm (Tab. 42). Il faut ajouter qu’à Baraki, les
deux espèces-proies signalées au niveau du lardoire mesurent l’une 45 mm (Chilopoda
sp. ind.) et l’autre 130 mm (Erithacus rubecula). La Pie-grièche fixe ses proies le plus
souvent près des coins de la clôture du grillage qui entoure la station. Il faut signaler que
la Pie-grièche semble augmenter l’intervalle entre les proies accrochées sur les lardoires
afin de bénéficier d’une plus grande superficie territoriale, face aux congénères voisins.
En effet, entre les mois de juin et de juillet ce sont les mêmes proies restées piquées et
qui ont été déjà mentionnées entre mars et mai (Tab.40). En fait la Pie-grièche a changé
de lieu et s’est déplacée à proximité d’un verger de citronniers à environ 700 m de la
station, lieu apparemment plus riche en proies, dans le but de nourrir leurs jeunes oisillons
demeurés au nid. Il faut ajouter que d’après des habitants locaux, Lanius meridionalis
vient visiter la station quelques minutes avant le crépuscule. En août, une nouvelle
espèce-proie est remarquée dans les lardoires de la station de Ramdhania. C’est
Chalcides ocellatus, ce qui confirme la présence de la Pie-grièche malgré qu’il n’y ait plus
de pelotes rejetées dans la station.

3.3.1.2 - Biologie de la reproduction de la Pie-grièche méridionale Lanius
meridionalis

L’essentiel de notre étude de la reproduction de la Pie-grièche méridionale a été fait dans
la station de Baraki, et a été complétée par quelques observations complémentaires
glânées à Ramadhnia et à l’INA d’El Harrach. Cette étude porte sur le recensement des
nids et leur mensuration, la biométrie des œufs, la chronologie et le succès de la
reproduction, et enfin comporte un suivi des jeunes oiseaux.

3.3.1.2.1 – Recensement des nids de la Pie-grièche méridionale

La Pie-grièche méridionale se reproduit régulièrement à Baraki, comme l’atteste le
nombre de nids qui y furent retrouvés. Entre la fin février et début mai 2007, cette localité
de 10 hectares a hébergé une moyenne de 4,3 couples (Fig. 55), valeur obtenue après
sept passages dans le quadrat. Les résultats du recensement des nidseffectués entre
2006 et 2007 à Baraki ainsi qu’à Ramadhnia et dans le parc de l’I.N.A. à El Harrach sont
consignés et classés selon leur support végétal dans le tableau 43.
Chapitre III – Résultats sur l'avifaune de la Mitidja

Fig. 55– Spécimen de Lanius meridionalis meridionalis (Collection du M.N.H.N. de Paris (réf. C.g. 1972, n° 1165)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nids</td>
<td>Baraki</td>
<td>Ramadhnía</td>
</tr>
<tr>
<td>n° 1</td>
<td>Olea europea</td>
<td>Citrus bigaradia</td>
</tr>
<tr>
<td>n° 2</td>
<td>Olea europea</td>
<td>Citrus bigaradia</td>
</tr>
<tr>
<td>n° 3</td>
<td>Olea europea</td>
<td>/</td>
</tr>
<tr>
<td>n° 4</td>
<td>Olea europea</td>
<td>/</td>
</tr>
<tr>
<td>n° 5</td>
<td>Olea europea</td>
<td>/</td>
</tr>
<tr>
<td>n° 6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>n° 7</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>n° 8</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>n° 9</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Totaux</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

/ : sans objet.

La première nidification de Pie-grièche méridionale a été observée à Baraki à la fin avril 2006. Des prospections plus poussées, non seulement à Baraki, mais aussi à Ramadhnía et dans le parc de l’INA ont révélé la présence de six nids supplémentaires en 2006, et de 10 en 2007. C’est dans la station de Baraki que nous avons trouvé le plus de nids, cinq en 2006 et neuf en 2007. Seulement deux ont été observés à Ramadhnía (2006) et un seul dans le Parc de l’I.N.A. (2007). La majorité (11) étaient construits dans des oliviers. Les autres supports végétaux étaient constitués par des bigaradies (deux cas, à Ramadhnía) et des filaos (deux cas à Baraki et un à l’I.N.A.) (Fig. 56a, b et c) (Tab. 43). Un nid a en plus été observé sur un Palmier des Canaries le 5 mai 2006, près d’El Alia. Il abritait 3 oisillons âgés de 11 à 12 jours, de sorte que leur éclosion à dû se
produire vers le 25 avril.

3.3.1.2.2 – Mensurations des nids de la Pie-grièche méridionale recensés entre 2006 et 2007

Les mensurations des nids, faites en 2006 et en 2007, sont exposées dans le tableau 44.

<table>
<thead>
<tr>
<th>Stations</th>
<th>N°1</th>
<th>N°2</th>
<th>N°3</th>
<th>N°4</th>
<th>N°5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°1</td>
<td>1,5</td>
<td>13</td>
<td>10,5</td>
<td>7,9</td>
<td>3,4</td>
</tr>
<tr>
<td>N°2</td>
<td>-</td>
<td>15,9</td>
<td>6,8</td>
<td>5,5</td>
<td>1,3</td>
</tr>
<tr>
<td>N°3</td>
<td>-</td>
<td>26,3</td>
<td>11,5</td>
<td>9,5</td>
<td>2,1</td>
</tr>
<tr>
<td>N°4</td>
<td>1,5</td>
<td>21,5</td>
<td>8,5</td>
<td>10,5</td>
<td>2,4</td>
</tr>
<tr>
<td>N°5</td>
<td>3,5</td>
<td>17,5</td>
<td>7,5</td>
<td>10</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Baraki

N°1	4	19,5	9	4,4	1,7
N°2	4	20	9	4,4	1,7
N°3	4	21,5	9,4	4,4	2,1

Moyennes

<table>
<thead>
<tr>
<th></th>
<th>19,38</th>
<th>9,27</th>
<th>8,98</th>
<th>2,32 ±1,15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+3,08</td>
<td>+1,56</td>
<td>-1,48</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 44 – Mensurations des nids de Pie-grièche méridionale trouvés en 2006 et 2007 à Ramadhnia, à Baraki et à l’INA

D1 : Diamètre externe du nid ; D2 : Diamètre interne du nid ; H1 : Hauteur du nid ; H2 : Hauteur par rapport au sol (mètre) ; - : Mensurations non effectuées sans objet. I.N.A. : Institut national agronomique

Les mensurations de nids recueillies en 2006 sont à la fois fragmentaires et bien moins nombreuses que celles prises en 2007, mais elles apportent néanmoins un utile complément d'information. Ce sont donc essentiellement les nids examinés à Baraki qui
Chapitre III – Résultats sur l’avifaune de la Mitidja

sont pris en considération ici. Leur diamètre externe est compris entre 15,9 et 26,3 cm (moy. = 19,6 ± 3,08 cm), et leur diamètre interne se situe entre 6,8 et 11,5 cm (moy. = 9,3 ± 1,56 cm), avec une hauteur comprise entre 5,5 et 10,5 cm.

Fig. 56 – Quelques exemples de nids et de supports végétaux utilisés par la Pie-grièche méridionale à Baraki (Original)

(moy. = 8,6 ± 1,5 cm). Le nid unique signalé à l’INA présente des dimensions proches de ceux de Baraki, mais son diamètre externe est nettement moindre (D1 = 10 cm).

La hauteur des nids par rapport au sol est assez basse, et comprise entre 1,7 et 5,4 m (moy. = 2,5 ± 1,15 m) (Tab. 44). Cette large variation semble bien indiquer que la Pie-grièche méridionale ne montre pas de préférence bien nette pour la hauteur du site de son nid, laquelle doit surtout dépendre des emplacements disponibles pour l'établir. Et de fait la Pie-grièche méridionale peut construire son nid à faible hauteur, comme à Ramadhnia, où l'un d'entre eux était établi à 1,1 m de hauteur sur un bigaradier, au sein d'un verger de citronniers (Tab. 44).
3.3.1.2.3– Biométrie des œufs de la Pie-grièche méridionale recensées entre 2006 et 2007

Les mesures de masse et du grand axe de 35 œufs déposés dans les nids que nous suivions sont rassemblées dans le tableau 45. Nous n'avons pas pris en considération les nids qui ne contenaient pas d'œufs, car il n'était alors pas possible de savoir s'il y avait réellement tentative de reproduction.

<table>
<thead>
<tr>
<th></th>
<th>Nombre de couv. (x)</th>
<th>Grand axe de l'œuf (mm)</th>
<th>Moy.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T.p.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Baraki 2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°1</td>
<td>5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>N°2</td>
<td>4.7</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Baraki 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°3</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>N°4</td>
<td>5</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>N°5</td>
<td>6</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>ENA 2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N°1</td>
<td>4</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>N°2</td>
<td>5</td>
<td>5.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Tableau 45 – Valeurs du poids et des longueurs des grands axes des œufs de la Pie-grièche méridionale

T.p. : Tailles de ponte ; Moy. : Moyennes ; - : Mensurations non effectuées ; / : sans objet.

Les tailles de ponte dans les nids examinés s'échelonnaient de un à six œufs, avec une moyenne de 4,3 ± 1,34. L'œuf avec la masse la plus faible a été observé 2007 à Baraki (4,2 g), et la plus élevée en 2006 au même endroit (5,6 g) (Tab. 45). Les valeurs moyennes des masses des œufs par nid sont comprises entre 4,7 ± 0,13 et 5,5 ± 0,04 gr. Les longueurs des grands axes elles sont comprises entre 2,0 et 2,7 cm, et leur moyenne par nid se situe entre 2,1 ± 0,08 et 2,6 ± 0,08 cm (Tab. 45). Ces mesures nous ont permis de calculer l'indice de coquille de chaque œuf (Tab. 46).
Tableau 46 – Valeurs de l’indice de coquille

Selon les nids examinés, l’indice de coquille varie en 2007 de 0,18 à 0,28. Ses moyennes par nid vont de 0,19 ± 0,01 à 0,25 ± 0,01.

3.3.1.2.4 - Chronologie des principales étapes de la reproduction de la Pie-grèche méridionale à Baraki

Du fait de la difficulté de la recherche des nids, tous n'ont pas été découverts au même stade, certains le furent à celui de la construction, des œufs, des jeunes oisillons, etc., et, comme nous l'avons déjà signalé, il n'est pas toujours possible de savoir si l'on a affaire à un nid en construction ou à un nid vide. Tout ceci fait que les observations sont incomplètes pour certains nids. A partir de sa découverte, chaque nid a été suivi jusqu'à l'envol des jeunes. Après leur éclatement, les jeunes Pies-grèches méridionales restent usuellement aux alentours du nid, et peuvent même y revenir la nuit. Les dates de pontes, d'éclusions et d'envols que nous avons notées sont rassemblées dans le tableau 47.

Les deux nids les plus précoces ont été découvert le 21 avril 2007 à Baraki au moment de l’éclatement des premiers œufs et le plus tardif le 25 mai 2006 dans la même station (Tab. 47). Malgré le peu de renseignements recueillis sur les dates de ponte, il a été possible d’estimer la durée de la couaison, qui s’étend sur une période de 13 ou 14 jours. Par ailleurs la durée de l’élevage varie entre 16 et 17 jours (Fig. 57). Lors du nourrissage des oisillons, les parents restent au nid à tour de rôle. Si le nid est dérangé le mâle ou la femelle adulte s’éloigne peu de ses petits et manifeste son inquiétude par des cris d’alarme répétés. Après leur sortie du nid, les juvéniles continuent à recevoir des
proies de la part de leurs parents.

<table>
<thead>
<tr>
<th>N°</th>
<th>Dates du début de Pontes</th>
<th>Dates des éclosions</th>
<th>Dates des envols</th>
<th>Durées des élevages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 mai</td>
<td>24 mai</td>
<td>11 juin</td>
<td>17 jours</td>
</tr>
<tr>
<td>2</td>
<td>10 mai</td>
<td>27 mai</td>
<td></td>
<td>17 jours</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>8 mai</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>18 mai</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>25 mai</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>Dates du début de Pontes</th>
<th>Dates des éclosions</th>
<th>Dates des envols</th>
<th>Durées des élevages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 avril</td>
<td>13 mai</td>
<td>29 mai</td>
<td>16 jours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>Dates du début de Pontes</th>
<th>Dates des éclosions</th>
<th>Dates des envols</th>
<th>Durées des élevages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>8 mai</td>
<td>17 jours</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>21 avril</td>
<td>Nid déserté</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>21 avril</td>
<td>Nid déserté</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>8 mai</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>25 avril</td>
<td>12 mai</td>
<td>17 jours</td>
</tr>
<tr>
<td>6</td>
<td>3 mai</td>
<td>17 mai</td>
<td>2 juin</td>
<td>16 jours</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>11 mai</td>
<td>27 mai</td>
<td>16 jours</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>14 mai</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>23 mai</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>Dates du début de Pontes</th>
<th>Dates des éclosions</th>
<th>Dates des envols</th>
<th>Durées des élevages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>5 mai</td>
<td>17 mai</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 47 - Dates observées des pontes, des éclosions et des envols des jeunes de la Pie-grièche méridionale à Baraki
- : Absence de données ; * : Oisillons disparus

3.3.1.2.5 - Succès de la reproduction de la Pie-grièche méridionale

| N°| % œufs morts | % œufs éclosés | % envolés | % survie
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X C0</td>
<td>1</td>
<td>5</td>
<td>100%</td>
<td>7,5%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>92,5%</td>
<td>7,5%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Tableau 48 – Taux des éclosions et succès à l’envol des jeunes pies-grièches méridionales
La réussite de la reproduction a été excellente en 2006 et nettement moindre en 2007, aussi bien au stade des œufs qu’à celui de l’envol, ou encore en ce qui concerne la réussite totale (Tab. 48). Cette différence fut surtout due à une mortalité des œufs très supérieure (47,4 %) en 2007 qu’en 2006 (7,1 %). La différence de mortalité des poussins, bien que moins grande, fut quand même marquée (0 % en 2006, 25 % en 2007) (Tab. 48). Dans la Mitidja, la Pie-grèche méridionale ne semble pas connaître de prédateurs notables en dehors du chat domestique et de la couleuvre fer-à-cheval Zamenis hippocrepis. Elle subit, comme de nombreuses autres espèces, une pression anthropique assez forte, du fait de la réduction des biotopes naturels et de l’extension de l’urbanisation, ce qui limite son aire de distribution. Les couples se retrouvent alors confinés sur de petites surfaces. Elle n’est pas chassée comme certains rapaces ou
oiseaux-gibiers et de cage. Cependant, les activités humaines la dérangent beaucoup, en particulier pendant sa période de reproduction. Elle abandonne alors facilement son nid, même après la ponte. Il lui arrive parfois de faire une deuxième couvée dans le même nid, fait que nous n’avons observé qu’une seule fois sur l’ensemble des nids que nous avons suivis.

3.3.1.2.6 – Développement des jeunes oisillons au nid

<table>
<thead>
<tr>
<th>Dates</th>
<th>Poids des jeunes oisillons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>5 mai</td>
<td>8,5</td>
</tr>
<tr>
<td>6 mai</td>
<td>9</td>
</tr>
<tr>
<td>7 mai</td>
<td>11,1</td>
</tr>
<tr>
<td>8 mai</td>
<td>16,7</td>
</tr>
<tr>
<td>9 mai</td>
<td>18,8</td>
</tr>
<tr>
<td>10 mai</td>
<td>24,25</td>
</tr>
<tr>
<td>11 mai</td>
<td>29</td>
</tr>
<tr>
<td>12 mai</td>
<td>34,5</td>
</tr>
<tr>
<td>13 mai</td>
<td>40</td>
</tr>
<tr>
<td>14 mai</td>
<td>41,5</td>
</tr>
<tr>
<td>15 mai</td>
<td>44,5</td>
</tr>
<tr>
<td>16 mai</td>
<td>45,5</td>
</tr>
<tr>
<td>17 mai</td>
<td>-</td>
</tr>
</tbody>
</table>

- : Absence de données ; P : Poids

Les oisillons suivis pesaient entre 7 et 8,9 grammes à la naissance (Tab. 49). La croissance des trois jeunes qui ont vécu le plus longtemps s’est faite de manière comparable, avec une accélération du troisième au quatrième jour et une reprise du cinquième au neuvième jour, quand les oisillons atteignent une masse comprise entre 38 et 41 g (Fig. 58)..
3.3.2 – Cas de l’Elanion blac *Elanus caeruleus*

Nous présentons dans cette partie nos résultats sur la distribution de l’Elanion blac dans la zone d’étude, comparée à celles des autres Rapaces de la Mitidja, ainsi que son comportement trophique.

3.3.2.1 – Distribution *d*’*Elanus caeruleus* en Mitidja et sa place au sein des rapaces diurnes vivant dans la région

Les observations ornithologiques que nous avons faites chaque mois sur le terrain dans la Mitidja nous ont permis de recenser un certain nombre d’espèces de Rapaces diurnes, parmi lesquelles l’Elanion blac (Fig. 59) se signale par sa fréquence, qui vient juste après celle du Faucon crécerelle. La liste de ces espèces, ventilée par stations, est donnée dans le tableau 50.
Fig. 59 – Spécimens d’Elanus caeruleus (Collection du M.N.H.N. de Paris ; réf. C.g. 2000, n° 1246, Cameroun)

Tableau 50 – Espèces de rapaces diurnes observées en Mitidja entre 2004 et 2006

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquila chrysaetos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hieraaetus fasciatus</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Buteo rufinus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Buteo buteo</td>
<td>-</td>
<td>+</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Circus aeruginosus</td>
<td>+</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Accipiter nisus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Milvus milvus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Milvus nigrans</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elanus caeruleus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
<td>+</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Falco naumanni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>S = 13</td>
<td></td>
</tr>
</tbody>
</table>

Rég. : Réghaia ; Roui. : Rouiba ; Méft. : Méftah ; Cher. : Cherarba ; Osm. : Oued Smar ; Bar. : Baraki ; AinN. : Ain Naadjia ; Cheb. : Chebli ; Birt. : Birtouta ; Bfar. : Boufarik ; Blid. : Blida ; Bkik. : Bourkika ; + : Présence de l’espèce ; - : Absence ; N. : Nombres de présence

Ce sont donc 13 espèces de Rapaces diurnes qui sont signalées de la Mitidja, et y

Parmi les rapaces rares dans la Mitidja, on peut citer le Faucon crécerelle, observé une fois près d’Aïn Naadja en train de planer. De même, un seul individu de Buse variable a été observé, en hiver sur les terres ouvertes de Bourkika, en compagnie de deux Grands Corbeaux et d’un Elanion blac. Elle était perchée sur un frêne, en train de dévorer une proie. L’aigle royal n’a, lui aussi, été rencontré qu’une fois, en novembre 2006, quand un individu venu se poser sur un vieux cyprès près de Boufarik, probablement pour s’abriter du vent violent qui soufflait ce jour-là. Cette espèce fréquente les hauteurs de l’Atlas bidéen, en particulier près de Soumaâ, au dessus des gorges de la Chiffa, et ne descend que rarement en plaine.

3.3.2.2 – Comportement trophique de l’Elanion blac.

Nous avons étudié le comportement trophique de l’Elanion blac en analysant ses pelotes de réjection, que nous avons d’abord mesurées, puis disséquées afin d’obtenir des information sur le nombre et la variété des espèces consommées par cet oiseau.

3.3.2.2.1 – Mensurations des pelotes d’Elanus caeruleus et nombre de proie par pelote

En général, les pelotes rejetées par l’Elanion blanc sont intactes, et de fait seules trois sont fragmentées parmi les 30 que nous avons analysées. Les mensurations de celles-ci sont présentées dans le tableau 51.

Tableau 51 – Longueurs et diamètres des pelotes d’Elanus caeruleus recueillies à Haouch Makkfi (Meftah) entre août et septembre 2006

<table>
<thead>
<tr>
<th></th>
<th>Valeur minimale</th>
<th>Valeur maximale</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur (mm)</td>
<td>14</td>
<td>37</td>
<td>22,93 ± 4,87</td>
</tr>
<tr>
<td>Diamètre (mm)</td>
<td>12</td>
<td>22</td>
<td>16,96 ± 2,65</td>
</tr>
</tbody>
</table>

Les pelotes de réjection de l’Elanion blac ont une forme allongée, avec une longueur allant de 14 à 37 mm (moyenne 22,93 ± 4,9) et un diamètre compris entre 12 et 22 mm (moyenne 16,96 ± 2,7) (Tab. 51).

Après analyse des régurgitats, les éléments osseux de vertébrés sont séparés afin d’estimer le nombre de proies par pelote dont les résultats sont installés dans le tableau
Etude de l’Avifaune de la Mitidja

49.

Tableau 52 – Nombres de proies trouvées par pelote d’*Elanus caeruleus* à Haouch Makhfi (Meftah) entre août et septembre 2006

<table>
<thead>
<tr>
<th>Nombres de proies / pelote</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>Totaux</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombres de pelotes</td>
<td>9</td>
<td>15</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>2,10 ± 1,27</td>
</tr>
<tr>
<td>Pourcentages</td>
<td>30</td>
<td>50</td>
<td>13,33</td>
<td>33</td>
<td>33</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Le nombre de proies contenue dans une pelote varie de une à sept, et est en moyenne de 2,1 ± 1,3 proies. La moitié des pelotes sont constituées de deux proies, et celles qui n'en contiennent qu'une seule ne comptent que pour un peu moins du tiers du total. Celles qui contiennent plus de deux proies sont faiblement représentées (Tab. 52).

3.3.2.2.2 – Composition et diversité du menu de l’Elanion blac à Haouch Makhfi

Les espèces-proies rencontrées dans les pelotes que nous avons décorpillées sont classées dans le tableau 53, avec leurs fréquences relatives et la biomasse qu’elles représentent.

<table>
<thead>
<tr>
<th></th>
<th>Effectifs</th>
<th>A.R. %</th>
<th>B %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aves sp. ind.</td>
<td>2</td>
<td>3,17</td>
<td>2,04</td>
</tr>
<tr>
<td>Spermus uncinatus</td>
<td>1</td>
<td>1,59</td>
<td>0,85</td>
</tr>
<tr>
<td>Rodentia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mus spretus</td>
<td>45</td>
<td>71,43</td>
<td>64,46</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>1</td>
<td>1,59</td>
<td>1,52</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>3</td>
<td>4,76</td>
<td>22,78</td>
</tr>
<tr>
<td>Insectivora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocidura russula</td>
<td>11</td>
<td>17,46</td>
<td>8,35</td>
</tr>
<tr>
<td>Totaux</td>
<td>63</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tableau 53 - Abondances relatives et biomasses des espèces-proies trouvées dans les pelotes de rejection d’*Elanus caeruleus* recueillies à Meftah entre août et septembre 2006

B : Biomasses ; A.R. : Abondances relatives

A Haouch Makhfi, le menu de l’Elanion blac est donc presque uniquement composé d’un faible nombre d’espèces de vertébrés, car nous n’en avons rencontrées que quatre.
Mus spretus semble bien constituer l’essentiel des proies de ce Rapace, et est représentée par 45 individus (A.R. = 71,4 %). Elle est suivie par 11 individus de Crocidure russule (A.R. = 17,5 %). Les autres espèces-proies, et en particulier les oiseaux, sont faiblement consommés (Tab. 53) (Fig. 59). Cependant, Mus spretus représente 64,5 % de la biomasse totale des proies, et est suivie en cela par le Rat surmulot, qui, avec une biomasse de 22,8 % est une proie rentable à cause de sa grande taille. A l’inverse, la Crocidure russule ne compte que pour 8,4 % de la biomasse totale (Fig. 60).

Les valeurs de l’indice de diversité de Shannon-Weaver et de celui de l’équirépartition des espèces-proies d’Elanus caeruleus sont placées dans le tableau 54.

Tableau 54 – Valeurs des indices de diversité de Shannon-weaver (H’) et de l’équirépartition (E) des espèces-proies d’Elanus caeruleus

<table>
<thead>
<tr>
<th></th>
<th>Indice de diversité de Shannon-Weaver (bits)</th>
<th>Indice d’Equirépartition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haouch Makhfi</td>
<td>1,34</td>
<td>0,52</td>
</tr>
</tbody>
</table>

Comme on pouvait s’y attendre d’après les résultats précédents, l’indice de Shannon-Weaver indique, avec 1,3 bits une faible diversité des proies de l’Elanion blac à Haouch Makhfi. Cependant la valeur de 0,5 de l’indice d’équirépartition montre que les effectifs de ces espèces-proies ont tendance à être équilibrées.

3.3.2.2.3 – Mode de chasse de l’Elanion blac

Le seul mode de chasse d’Elanus caeruleus est le vol stationnaire. Les différentes composantes du comportement de l’Elanion blanc, chasse, perchage et parade que nous avons observées dans la Mitidja sont rassemblées dans le tableau 55.

En Mitidja, l’Elanion blanc est souvent observé le matin, perché soit sur un poteau électrique où sur un support végétal comme une haie de Cyprès, un frêne ou un olivier isolé. Comme chez la plupart des Oiseaux, la parade n’est observée qu’en période de reproduction, comme par exemple chez un couple observé le 16 mars 2006 au-dessus des terres agricoles de Rouiba. La femelle restait posée sur un poteau électrique pendant que le mâle tantôt passait au-dessus d’elle en planant, ou bien la rejoignait afin de s’accoupler, ce qu’il fit à plusieurs reprises (Tab. 55). L’Elanion blaclocalise ses proies au vol stationnaire avant de fondre brusquement sur elles. Cette chasse est surtout observée en fin d’après midi.
Fig. 59 - Composition en abondance relative du menu de blac à Mftah en 2006

Fig. 60 - Composition en biomasse du menu de l'Elanion Mftah en 2006

<table>
<thead>
<tr>
<th>Localités</th>
<th>Porcage</th>
<th>Parade</th>
<th>Chasse (vol stationnaire)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lieu</td>
<td>Heure</td>
<td>Lié</td>
</tr>
<tr>
<td>Rouba</td>
<td>Câble électrique</td>
<td>11 h 30</td>
<td>Poteau électrique</td>
</tr>
<tr>
<td>Chebl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Meftah</td>
<td>Poteau électrique</td>
<td>16 h 15</td>
<td>-</td>
</tr>
<tr>
<td>Barak</td>
<td>6 h 20</td>
<td>23 IX 06</td>
<td>-</td>
</tr>
<tr>
<td>Biroulia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boumane</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bourrika</td>
<td>Frêne</td>
<td>10 h 10</td>
<td>30 XII 06</td>
</tr>
<tr>
<td>Réghaia</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boufanik</td>
<td>Cypres</td>
<td>10 h 25</td>
<td>12 XII 06</td>
</tr>
</tbody>
</table>

/ : Absences de données ; - : Observation non réalisée

À Baraki, en novembre 2006 un individu est vu au vol stationnaire au bord de la route à 17 h 15, en train de repérer sa proie dans des terres agricoles. Il accélère le battement de ses ailes pendant 30 à 40 secondes et oriente la tête vers le bas. De temps à autre, il se perche plus loin sur un poteau ou un support végétal et revient à plusieurs reprises vers son lieu de chasse afin de repérer sa proie. Ce mode de chasse a également été observé en octobre 2006 à 16h 30 à la limite d’un verger d’agrumes de Birtouta. L’oiseau effectue un point fixe au vol à deux reprises avant de descendre vers le sol et de s’attaquer à sa victime. En général, dans le territoire de chasse formé de milieux ouverts l’Elanion blaccapture ses proies à l’approche du crépuscule, c'est-à-dire à partir du moment où les rats et les souris commencent à s’activer (Tab. 55).
Etude de l'Avifaune de la Mitidja
Chapitre IV – Discussions

Les discussions concernent d’abord le peuplement avien de la plaine de la Mitidja, puis les espèces introduites ou en pleine expansion et enfin l’écologie trophique et la reproduction de deux espèces d’oiseaux peu connues dans la région d’étude.

4.1. – Peuplement avien de la Mitidja

Les discussions sur le peuplement avien de la Mitidja concernent la biogéographie, le statut phénologique et l’exploitation des résultats par des indices écologiques.

4.1.1. – Biogéographie et statuts phénologiques des espèces aviennes de la Mitidja

La majorité de l’avifaune de la Mitidja appartient au type faunique Paléarctique avec 32 espèces soit un taux de 25,6 %. Les types fauniques Européen avec 17 espèces (13,6 %) et Européo-Turkestanien avec 16 espèces (12,8 %) viennent ensuite. De nombreux auteurs se sont intéressés à la distribution des espèces aviennes selon les types fauniques. Déjà, FELLOUS (1990) ayant travaillé sur l’avifaune du parc national de Theniet El Had, souligne la forte proportion des espèces d’oiseaux qui se rapportent aux
Les oiseaux recensés dans la région d’étude se répartissent entre cinq catégories fauniques. Ce sont les catégories Méditerranéenne, Holarctique ou Ancien Monde, Paléarctique, Paléo-Montagnarde, Européenne et Européo-Turkestanienne (BLONDEL et al., 1978). De ce fait, dans la région d’étude la catégorie Méditerranéenne apparaît la première avec 28,8 %. BLONDEL et al. (1978) ont fait une synthèse biogéographique et écologique du peuplement avien dans le massif du Mont Ventoux. Ces auteurs attirent l’attention sur le fait que dans toute la série de montagnes qui s’orientent du nord vers le sud sur une distance de plus de 300 kilomètres, une avifaune européenne et boréale à vaste répartition dans la région paléarctique domine. C’est cette faune qui constitue le fond de l’avifaune (67 % dans les Alpilles à plus de 80 % dans le Faucigny). Les nuances ne sont apportées que par la présence d’éléments alpins et montagnards dans les massifs nordiques et d’éléments méditerranéens dans les massifs provençaux. Il faut rappeler qu’en Algérie, les travaux faits par LEDANT et al. (1981) montrent que 40,6 % des oiseaux appartiennent à la catégorie faunique Méditerranéenne. Par contre dans le parc national de Théniet El Had, FELLOUS (1990) signale que c’est la catégorie faunique Boréale qui est la plus représentée avec 60 espèces au total (65 %). Cependant la catégorie Méditerranéenne domine également dans la Kabylie des Babors avec 38,3 % (BELLATRECHE, 1994) et dans le Djebel Babor avec 34,6 % (BELLATRECHE, 1999).

Le présent inventaire ornithologique dans la plaine de la Mitidja a permis de recenser 125 espèces d’oiseaux dont 60 espèces (48 %) sont des sédentaires. Dans les forêts de chêne-liège du Maroc, THEVENOT (1991) note que la majorité de l’avifaune nicheuse des subérais comprend une majorité d’espèces sédentaires avec 52 espèces soit 51,5 %. Ceci est dû à la disponibilité des ressources alimentaires diversifiées tout au long de l’année ajoute le même auteur. Dans la Kabylie des Babors, BELLATRECHE (1994) a réparti les sédentaires en fonction des catégories fauniques. Cet auteur a remarqué que les proportions des espèces sédentaires sont toujours supérieures à celles des espèces estivantes dont la supériorité numérique en faveur des sédentaires, est de 15 espèces (75,9 %) pour la catégorie Paléarctique et Paléo-Montagnarde. Il est à signaler que beaucoup d’espèces tendent à se sédentariser avec le temps. Déjà certaines espèces sont devenus sédentaires comme le Goéland leucophée Larus michahellis et le Héron garde-bœufs Bubulcus ibis. En Europe, certains auteurs se sont intéressés au

Il est à souligner que la Tunisie qui est 15 fois plus petite que l’Algérie, comprend 395 espèces observées dont 130 espèces traversent régulièrement la Tunisie, généralement à la fois à l’aller et au retour ou soit à l’aller ou au retour seulement pour les espèces rares ou discrètes (ISENMANN et al., 2005). Auparavant en 2000 dans 53 oasis du Sud tunisien, SELMI montre que 24,4 % des 86 espèces d’oiseaux vues ou entendues sont migratrices estivantes. En effet parmi les contraintes rencontrées par ces migrateurs, il y a la traversée du Sahara, les adversités météorologiques et l’inhospitalité trophique des contrées sahariennes dépouvues de végétation (ISENMANN et al., 2005).

4.1.2. – Discussions générales sur les résultats du peuplement avien
exploités grâce à des indices écologiques et des techniques statistiques

4.1.2.1. – Discussion sur les relevés des échantillonnages fréquentiels progressifs

4.1.2.2. - Richesse totale et moyenne et Coefficient d'homogénéité des oiseaux de la Mitidja

Dans le présent travail, les richesses moyennes se situent entre 2,1 près de Birtouta et 7,7 (dans des vergers de Boufarik. Mais en général les valeurs de s sont faibles dans les stations d’échantillonnages se trouvant au milieu de la région d’étude, soit depuis Cherrarba (3,7) jusqu’à Birtouta (2,1). BLONDEL (1975) note parmi 23 milieux du Mont Ventoux des valeurs plus élevées notamment en cédrade (12,1 espèces). Il est à souligner que nos résultats confirment ceux obtenus par MOALI (1999) en Grande Kabylie. Effectivement cet auteur a remarqué parmi les 8 stations choisies, que la richesse moyenne est de 7,4 espèces dans les milieux agricoles. De même, BENYACOUB et CHABI (2000) signalent que dans les pelouses et terrains agricoles la richesse moyenne du peuplement avien est égale à 6,2 espèces. Ces auteurs précisent que ce type milieu est fréquenté à des degrés divers par un grand nombre d’oiseaux du fait de son morcellement au sein de la mosaïque d’habitats du parc national d’El Kaka. Par ailleurs les valeurs des richesses moyennes dans les pelouses des Couzes dans le Nord du Massif Central sont plus importantes avec 11 espèces dans les Bruyères et 12 dans le Plateau de la Chaux. (BOITIER, 2002). Enfin FONDERFLICK (2006) remarque une évolution de la richesse moyenne suivant le gradient culture-pelouse-forêt. Mais d’après cet auteur les forêts ouvertes sont celles qui correspondent aux valeurs les plus élevées (7,8) en comparaison avec les milieux formés de cultures et de pelouse nue (3,7) ou de pelouse piquetée (4,2). Il faut ajouter que la présence de zones cultivées dans les Causses contribue donc à une augmentation de la richesse et de la diversité avifaunistique des milieux ouverts (FONDERFLICK (2006)).
Dans la plaine de la Mitidja, les valeurs du coefficient d’homogénéité T sont faibles dans l’ensemble des stations d’échantillonnage. La valeur maximale de ce coefficient est notée à Chebli (T = 29), suivie de celles obtenues à Boufarik (T = 23,9), à Rouiba (T = 23,1) et à Meftah (T = 21,9). Il est à souligner que dans un peuplement donné, la valeur de Test d’autant plus grande que ce peuplement est homogène (BLONDEL et al., 1981). Justement dans la Kabylie des Babors, BELLATRECHE (1994) trouve des valeurs du coefficient d’homogénéité plus grandes par rapport à celles mentionnées dans le présent travail. D’après le même auteur, ces valeurs de T concernent surtout la garrigue avec 60,3 et le maquis à chêne kermès avec 58,4. Ces deux milieux semblent connaître une importante compétition interspécifique (BELLATRECHE, 1994). Il en de même pour BENYACOUB et CHABI (2000) qui font état de valeurs de T élevées et qui soulignent que le degré d’homogénéité du peuplement avien le plus remarquable est celui de la zeenâa (T = 53,4). Cette valeur suggère un bon équilibre dans la distribution d’abondance des espèces, déterminé précisément par la qualité du milieu (BENYACOUB et CHABI, 2000).

En effet, les peuplements aviens de la Mitidja sont généralement très hétérogènes. Il est à souligner que plus l’écart entre la richesse moyenne et la richesse totale devient important et plus le nombre d’espèces rares est important. Ce cas est noté surtout à Blida (S = 43 ; s = 2,9) dont les espèces sont Galerida theklae, Anthus trivialis, Sylvia cantillans, Phylloscopus trochilus et Corvus monedula. Par ailleurs BELLATRECHE (1994) signale un nombre important d’espèces rares dans la subéria. Cet auteur considère que le peuplement de ce milieu est le plus hétérogène (T = 45,5).

4.1.2.3. - Diversité et équirépartition du peuplement avien de la Mitidja

Dans la plaine de la Mitidja, l’indice de diversité de Shannon-Weaver est supérieur à 4 bits dans quatre stations. Parmi elles, c’est la station la plus occidentale (Bourkika) qui présente la valeur la plus élevée (4,4 bits). La même constatation est faite par FONDERFFLICK (2006) dans les Causses de Lozère. Cet auteur signale des valeurs de la diversité supérieures à 4 bits dans quatre types de milieux. Il considère que c’est la lande ouverte qui possède la plus hausse valeur (H’ = 4,8 bits). La diversité avifaunistique de la station de Bourkika est relative à son milieu ouvert caractérisé par de vastes surfaces agricoles. Il est à souligner la présence de deux Djobels qui limitent Bourkika, l’un au nord (Djebel el Bitri) et l’autre au sud (Djebel Gueroua) auquel la forêt de Chabet el Guetaa fait suite et contribue à l’augmentation de la richesse et de la diversité du peuplement avien de ce milieu. En Italie, les études de LAIOLO et al. (2004), réalisées sur les communautés d’oiseaux dans une forêt de châtaigniers, montrent que la diversité avienne évolue avec l’âge de cette espèce d’arbre. Ces auteurs attirent l’attention sur le fait que les vieux arbres âgés de plus de 100 ans possèdent au niveau de leurs troncs et de leurs branches un grand nombre de cavités. Ces châtaigniers offrent de la nourriture, des emplacements de nidification et des sites pour passer la nuit. Il est à mentionner que les valeurs de l’indice de diversité H’ varient entre 3 et 4 bits pour les stations de Rouiba (3,2 bits), de Baraki (3,97 bits), de Birouta (3,4 bits) et de Boufarik (3,8 bits). La plus faible valeur de la diversité signalée dans la Mitidja est notée à Cherarba (2,3 bits). Cette station bien qu’elle présente un caractère rural, subit une pression anthropique d’abord à cause d’une urbanisation anarchique et d’autre part du fait que les petites surfaces
agricoles sont exploitées d’une façon intensive. Cette faible valeur notée à Cherarba (2,3 bits) est proche de celle mentionnée dans les forêts de Bourgogne (FERRY et FROCHOT, 1970). Ces auteurs signalent dans les futaies de chênes pédonculés une valeur de l’indice de diversité de Shannon-Weaver égale à 2,7 bits. Il en est de même dans le Chott d’Aïn El-Beïda près d’Ouargla où la diversité du peuplement avien est de 2,2 bits (BOUZID et SAMRAOUI, 2006).

Les valeurs de l’indice d’équirépartition (E) du peuplement avien de la Mitidja sont égales ou supérieures à 0,58 dans presque toutes les stations exception faite pour celle de Cherarba (E = 0,5). Dans la présente étude, les effectifs des espèces avinées présentes dans toutes les stations ont tendance à être en équilibre entre eux. Il est à noter que dans des boisements correspondant à 7 stades de succession du Pin sylvestre, MULLER (1988) trouve des valeurs de Ecomprises entre 0,7 et 0,9, lesquelles apparaissent plus élevées par rapport à celles trouvées lors de la présente étude. Des valeurs similaires de l’équirépartition sont obtenues dans une succession du Sapin de Douglas dans le Morvan (MARION et FROCHOT, 2001).

La valeur de l’indice d’équitabilité est assez élevée dans d’autres milieux où elle atteint 0,79 aussi bien comme dans la chênaie-hêtraie sur le Plateau Lorrain (MULLER, 1996) que dans une frênaie-chênaie dans la plaine d’Alsace (DENIS, 2001). Au Sahara près d’Ouargla, dans le chott d’Aïn El Beïda et dans la Sebkhet El-Mellah, BOUZID et SAMRAOUI (2006) trouvent des valeurs de E variant entre 0,6 et 0,8, valeurs qui se rapprochent de celles obtenues dans la présente étude. Ces auteurs précisent que dans ce type de milieu, la stabilité du peuplement avien peut être considérée comme moyenne ou importante. Il est à souligner que plusieurs stations limitrophes de la plaine de la Mitidja, soit celles présentes en aval de l’Atlas tellien, là où les premières collines annoncent Djebel Bouzegza ou soit celles qui se localisent près du piémont du Sahel algérois se caractérisent par des valeurs de E proches de 1. Il faut noter que par rapport à ces stations périphériques la proximité de milieux peu perturbés comme les forêts, les maquis et les friches de l’Atlas tellien et du flanc Sud du Sahel algérois permettent d’expliquer les raisons pour lesquelles les effectifs des espèces avinées ont une forte tendance vers un équilibre entre eux. Il est à souligner que les variations des taux du recouvrement végétal impliquent une plus grande hétérogénéité et contribuent à une augmentation de l’équitabilité d’un peuplement avien. Effectivement MARION (2000) trouve dans la réserve naturelle du Lac Tengiz (Kazakhstan) une valeur de E égale à 0,79 dans une steppe herbacée non arborée. Par contre, ce même auteur signale dans une steppe herbacée arborée une valeur de l’indice d’équirépartition égale à 0,89.

4.1.2.4. - Fréquences centésimales des principales espèces d’oiseaux observées en Mitidja

Au sein de l’avifaune recensée dans la plaine de la Mitidja, les discussions ne portent que sur les espèces d’oiseaux bien représentées en effectifs, fréquentes ou à densités élevées.

La Perdrix gambra (*Alectoris barbara*) est mentionnée avec des fréquences centésimales (F %) assez fortes dans 5 stations, toutes assez proches de l’Atlas tellien.
Ces valeurs de F % sont comprises entre 0,8 et 9,3 %. Les valeurs les plus élevées sont notées à Haouch Makhfi près de Meftah (9,2 %) et à Ouled Aïch à proximité de Blida (3 %). Il est à souligner, qu’à Béjaïa près de Si Aïch, NATOURI et DOUMANDJI (1997), signalent une valeur assez faible par rapport aux présents résultats. Ces auteurs ne mentionnent la présence de cette espèce qu’en milieu céréalière (0,7 %). La reproduction de la Perdrix gambra est bien suivie par AKIL et BOUDEDJJA (2001) près de Yakouren. La présence de cette espèce est notée à Bertinou (Zéralda), plus précisément à Haouch Souafi (IDOUHAR-SAADI et al., 2006). Cependant dans la subéraie de la Ma’amora au Maroc, Alectrois barbara n’est commune que dans les rares secteurs présentant une strate arbustive assez dense (CHERKAOUI et al., 2007). Elle subit d’après ces mêmes auteurs, des pertes considérables au moment de la nidification à cause du braconnage intense.

Le Pigeon ramier (Columba palumbus), est plus fréquent dans les stations du centre de la Mitidja et un peu moins dans celles de la partie orientale de la plaine. La plus forte abondance relative (F %) de cette espèce est mentionnée à Baraki avec 14,5 %. Dans une succession de pins sylvestres dans les Vosges du Nord, Columba palumbus est très fréquente avec les valeurs de F % qui se situent entre 37 et 69 % (MULLER, 1988). Il faut rappeler que d’une part le Pigeon ramier reste farouche en pleine campagne où il est d’ailleurs chassé (HUE et al., 2003), d’autre part les conditions météorologiques en hiver poussent les palombes à s’installer dans les plaines (LARDOS, 2004). En effet, dans la même région d’étude MERABET et al. (2006a) ont trouvé que la plus forte abondance du Pigeon ramier est notée à Birtouta avec 4,8 couples. Les abondances relatives (F %) observées dans la plaine de la Mitidja confirment celles de MERABET et al. (2006a) et de REMINI (2007). Les derniers auteurs cités ont montré, dans le parc de Ben Aknoun, que le Pigeon ramier pouvait atteindre une abondance relative élevée égale à 15,1 %, de laquelle la valeur mentionnée à Baraki se rapproche (14,5 %).

La Tourterelle des bois (Streptopelia turtur) est notée dans presque toutes les stations d’échantillonnage, à l’exception de Rouiba et de Chebli où l’espèce est quand même mentionnée en dehors des relevés. Cependant, la valeur de F % atteint un maximum à Baraki avec 42,7 %, suivie par celles de Meftah avec 11,4 % et de Birtouta avec 7,4 %. Il faut rappeler que cette espèce de Tourterelle niche dans la majeure partie de la Berbérie et du Sahara (HEIM de BALSAC et MAYAUD, 1962). Seuls les biotopes dépourvus d’arbres et les hauts sommets montagneux sont exclus précisément les mêmes auteurs. Les valeurs obtenues dans la plaine de la Mitidja diffèrent de celles de MAKHLOUF et al. (1997) qui notent dans la forêt de Baimem une fréquence relative (F %) de Streptopelia turtur à peine égale à 3,9 %. Nos résultats diffèrent également de ceux de NATOURI et DOUMANDJI (1997) qui signalent des valeurs de fréquences centésimales assez faibles, soit 0,24 % dans l’oliveraie et 0,76 % en milieu céréalière. Même, TELAILIA (2002) signale que Streptopelia turtur est peu abondante dans les forêts de Chêne-liège dont la plus grande fréquence centésimale est de 1,8 %. Il faut ajouter que dans la plaine de la Mitidja, S. turtur semble en extension et occupe pratiquement tous les types de milieux, même des zones interurbaines. Il est à souligner qu’au Maroc, cette Tourterelle est devenue très commune (THEVENOT, 1991) et reste toujours abondante avec une densité de couples nicheurs plus élevée au niveau des clairières (CHERKAOUI et al., 2007). Par ailleurs en Tunisie, la Tourterelle des bois niche dans les formations boisées.
du Nord et du Centre du pays, y compris dans les milieux cultivés même légèrement boisés et aussi bien dans les grandes oliveraies que dans les olivettes (ISENMANN et al. 2005).

La Tourterelle maillée (Streptopelia senegalensis) est moins fréquente par rapport à la tourterelle des bois. En effet le pic maximal de la fréquence centésimale (F %) est noté dans la station de Chebli avec 3,3 %. Pourtant dans le même milieu d’étude, MERABET et al. (2006a) ont obtenu une fréquence de 0,3 couple seulement. Par contre les résultats mentionnés dans le présent travail se rapprochent de ceux signalé par REMINI (2007) dans le parc de Bainem, compris entre 3,1 et 5,2 %. Il semble que l’expansion de la Tourterelle maillée s’effectue à un rythme nettement plus faible que celui de la Tourterelle turque. De ce fait, cette espèce qui est répandue dans les oasis (HEIM de BALSAC et MAYAUD, 1962) a réellement étendu son aire de distribution depuis le Sahara jusque dans la zone méditerranéenne en Algérie puisqu’elle y niche actuellement (ISENMANN et MOALI, 2000). Effectivement, elle s’est installée dans l’Algéris aux environs de 1975 où elle se reproduit depuis près de 30 ans (LEDANT et al., 1981). Cette espèce de Tourterelle est très abondante (8,02 %) dans les palmeraies de Biskra (GUEZOUl et al., 2002a). Il est à signaler qu’à l’origine la présence de la Tourterelle maillée en Turquie est due à son introduction par l’homme, notamment dans le Sud-Est du pays (SNOW et al.,1998). De ce fait, BERGIER et al. (1999) qui considèrent que la Tourterelle maillée fait partie de l’aviéfaune marocaine écrivent que les premiers couples colonisateurs proviendraient de l’ouest algérien. Ces mêmes auteurs précisent que l’expansion de Streptopelia senegalensis a touché en premier lieu les régions orientales, puis progressivement ses populations se sont établies dans le Centre–Sud et dans la côte atlantique. Il faut ajouter qu’en Tunisie, la Tourterelle mailléeest aujourd’hui incontestablement l’espèce caractéristique des oasis aussi bien traditionnelles que modernes (ISENMANN et al.,2005).

La Perruche à collier (Psittacula krameri) est rarement contactée sur le terrain et surtout lors de l’échantillonnage. Actuellement, les stations où l’espèce est plus fréquente sont Chebli avec 48,2 %, Ain Naadja avec 7,8 %, Réghaïa avec 1,7 % et Oued Smar avec 1,6 %. Dans le massif de l’Annapurna de l’Himalaya central, THIOLLAY (1980) trouve également des valeurs de F % plus fortes avec une abondance relative égale à 52 %. Il est à signaler qu’en Algérie, la Perruche à collier qui est encore au début de sa période d’expansion, ses effectifs sont assez modestes. Elle n’est mentionné ni par HEIM de BALSAC et MAYAUD (1962), ni par ETCHECOPAR et HUE (1964), ni par LEDANT et al. (1981), ni par ISEMANN et MOALI (2000). Il est mentionné que FELLOUS et al (2005) notent la reproduction de Psittacula krameri dans la région d’Alger. L’ensemble des discussions sur cette espèce exotique seront développées dans une autre partie dans le même chapitre intitulée “cas de la Perruche à collier”.

Le Guépier d’Europe (Merops apiaster) est observé souvent au vol toujours en groupe. Cette espèce de Meropidae n’est notée en fait qu’à Oued El Makhfi (Meftah) avec une abondance relative égale à 17,3 % et au marais de Réghaïa (13,0 %). Dans les subéraies sub-humides de la région de Larache au Maroc, la fréquence moyenne du Guépier d’Europe atteint 32,4 % (THEVENOT, 1991). Il est à noter que le Guépier d’Europe partage parfois les mêmes sites que le Guépier de Perse (ISENMANN et
MOALI, 2000). Vers le sud près de Biskra, GUEZOU et al. (2002a) signalent que *Merops apiaster* est plus fréquent (0,9 %) par rapport à *M. superciliosus* (0,4 %). Il est à souligner qu’au Mali, une autre espèce de Meropidae nommé le Guépier d’Orient (*Merops orientalis*) est présente dans l’Adrar des Iforas. Cette espèce semble y être très fréquente d’après les recherches effectuées par CLOUET et GOAR (2003). Par ailleurs, en septembre, dans les jardins de l’institut national agronomique d’El Harrach, des groupes de 30 à 40 individus de guépier d’Europe sont observés au crépuscule en train de percher sur les eucalyptus. Il s’agit de vagues d’individus en cours de migration qui arrivent depuis leurs aires européennes de reproduction et qui font une escale avant de reprendre leur vol vers les régions tropicales d’hivernation. En 1981, LEDANT et al. ont remarqué le passage de *Merops apiaster* en nombre important en avril-mai, y compris dans le sud, avec un pic situé entre la fin avril et la mi-mai. Ces mêmes auteurs signalent qu’en automne, l’espèce se raréfie dès septembre et les derniers guépiers disparaissent en octobre. De ce fait, les deux espèces qui viennent se reproduire en Algérie autant le Guépier d’Europe (*Merops apiaster*) que le Guépier de Perse (*Merops superciliosus*) retiennent l’attention de certains chercheurs ornithologues (AISSAOUI-MARNICHE et al., 2007 ; MARNICHE et al., 2007).

La Bergeronnette grise (*Motacilla alba*) est présente pendant la période d’hivernation beaucoup plus dans l’Est et l’Ouest de la Plaine de la Mitidja qu’en son Centre. La fréquence centésimale maximale de cette espèce est notée à Meftah avec 26,3 %. Cette espèce de Motacillidae est aussi fréquente (37 %) dans les jeunes plantations de pins sylvestres (MULLER, 1988). Par contre, dans les maquis du parc de Ben Aknoun, *Motacilla alba* est moins abondante avec 3,5 % seulement (REMINI, 2007). De ce fait, dans la plaine de la Mitidja, la Bergeronnette grise préfère fréquenter les parcelles agricoles labourées, et se met en groupe entre les mottes de terre pour rechercher des proies. En 1962, HEIM de BALSAC et MAYAUD ont déjà mentionné que cette espèce qui vient hiverner en nombre considérable dans toute l’Afrique du Nord n’habite que la plaine et non la montagne. Il faut ajouter qu’en France, cette espèce de Bergeronnette, aurait pu s’attarder à un déclin suite aux changements des pratiques agricoles et pastorales (JULLIARD et JIGUET, 2005). Il faut rappeler qu’en Hongrie, une étude sur les rapports entre l’intensité d’utilisation du milieu et l’abondance et la diversité aviaire est effectuée par VERHULST et al. (2004). Ces auteurs remarquent que l’abondance des oiseaux et leur diversité est plus importante dans les vignobles et les prairies abandonnées par rapport aux vignobles entretenus et les prairies fertilisées et exploitées d’une manière intensive. Ces mêmes auteurs précisent que les buissons qui naissent dans les milieux abandonnés favorisent l’installation de nombreuses espèces y compris les oiseaux caractéristiques des milieux naturels.

Le Bulbul des jardins (*Pycnonotus barbatus*) qui est très commun dans les milieux semi-ouverts du Tell (HEIM de BALSAC et MAYAUD, 1962), est signalée dans toute la zone d’étude. Le plus souvent, *Pycnonotus barbatus* est rencontré en petits groupes de 3 à 6 individus et même davantage. Il est à noter que les fréquences centésimales les plus importantes sont mentionnées à Birtouta avec 8,6 % et à Oued Smar avec 7,0 %. Dans la région de Sidi Aich le Bulbul des jardins est assez abondant dont les valeurs des fréquences centésimales sont comprises entre 2,9 et 5,9 % (NATOURI et DOUMANDJI, 1997). Par contre, les résultats du présent travail confirment ceux obtenus par CHIKHI et

Le Merle noir (*Turdus merula*) est présent dans toutes les stations d’échantillonnages de la région d’étude. Les fréquences centésimales les plus importantes sont notées dans la partie centrale de la Mitidja, là où les milieux sont formés de vergers d’agrumes ou de néfliers associés à des sols de cultures maraïchères. Les valeurs des fréquences centésimales sont de 13,2 % à Ain Naadja, de 9,7 % à Chebli et de 7,6 % à Boufarik. Il est à noter que sur un causse de Lozère en France, le Merle noir est très abondant (66 %) dans les formations ligneuses basses spontanées (LOVATY, 1992). De même dans le parc Bourget à Lausanne, TSCHANZ et al. (1993) attirent l’attention sur le fait que *Turdus merula* est l’espèce la plus fréquente avec un taux de 16,2 %. A Bruxelles, le Merle noir par sa forte fréquence, a conquis le titre d’oiseau le plus largement réparti, à égalité avec l’Étourneau sansonnet (RABOSEE et al., 1995). Il faut ajouter que cette espèce de Turidae est la plus abondante dans les montagnes de l’Andorre qui se situe dans la partie orientale des Pyrénées (ARGELICH et al., 1996). De même, dans les maquis d’Akfadou, *Turdus merula* est très fréquent d’après MERRAR et DOUMANDJI (1997) qui notent une fréquence centésimale égale à 76,2 %. Nos résultats sont comparables de ceux trouvés par CHIKHI et DOUMANDJI (2004) qui notent des taux compris entre 6,5 et 10,8 %. D’une manière générale, le Merle noir est devenu très abondant partout dans la Mitidja, là où les ressources trophiques sont présentes. Il profite des conditions favorables offertes par l’hétérogénéité du milieu. Il faut rappeler que ARGELICH et al. (1996) a mis en évidence l’augmentation des effectifs du Merle noir avec d’autres passereaux en relation avec la fermeture des milieux et le développement des zones boisées consécutives à la régression des activités agricoles et pastorales.

La Fauvette à tête noire (*Sylvia atricapilla*) est mentionnée surtout dans les vergers de rosacées et d’oliviers, dans les parcs et les jardins. La fréquence centésimale maximale de cette espèce est notée à Ain Naadja avec 5,4 %. Il est à souligner que dans les massifs montagneux du Mont Ventoux la fauvette à tête habite tout le gradient avec cependant une préférence marquée pour la vieille forêt (BLONDEL et al., 1978). Ces mêmes auteurs notent que la fréquence de cette espèce de Sylviidae atteint près de 25
%. Il faut rappeler que *Sylvia atricapilla* hiverno beaucoup plus dans les maquis de la Kabylie que sur les plaines côtières (LEDANT et al., 1981). De ce fait, la Fauvette à tête noire est peu abondante près de Sidi Aïch avec une fréquence de 2,5 % notée dans les vergers d’agrumes (NATOURI et DOUMANDJI, 1997). Par contre, cette espèce est plus fréquente (F % = 12,7 %) dans le Sahel de l’Algérie (MILLA et DOUMANDJI, 2002). En effet, *Sylvia atricapilla* contribue aussi avec d’autres espèces frugivores comme le Bulbul des jardins ou le Merle noir dans le phénomène de la dispersion des graines ou ornithochorie.

La Fauvette mélanocéphale (*Sylvia melanocephala*) qui est commune sur les deux versants de l’Atlas tellien de l’Ouarsenis à Boghar (HEIM de BALSAC et MAYAUD, 1962) est moins abondante par rapport à la fauvette à tête noire. Les valeurs des fréquences centésimales les plus fortes de *Sylvia melanocephala* sont notées près du marais de Réghaïa avec 2,8 % et à proximité de l’Oued Bourkika avec 1,8 %. Au Maroc, cette espèce est très abondante dans la subéra d’après THEVENOT (1991) qui note que les fréquences centésimales se situent entre 25 et 95,7 %. De même dans les formations de chêne-liège près d’El Kaka, TELAILIA (2002) a obtenu des abondances relatives élevées qui se situent entre 19,5 et 46,8 %. De ce fait, les présents résultats confirment ceux de MILLA et DOUMANDJI (2002) qui notent que les valeurs des abondances de cette espèce dans le Sahel algérios sont comprises entre 0,09 et 0,9 %. Il faut rappeler que le biotope préférentiel de la Fauvette mélanocéphale est constitué essentiellement par les associations végétales du type maquis méditerranéen (HEIM de BALSAC et MAYAUD, 1962).

La Mésange bleue (*Parus caeruleus*) est présente dans toutes les stations mis à part celle de Meftah. Les valeurs maximales des fréquences centésimales de cette espèce de Pariade sont notées dans la partie médiane de la Mitidja comme Ain Naadja (5,4 %) et Birtouta (4,8 %). Les valeurs observées dans le présent travail se rapprochent de celles comprises entre 3 et 6,6 % obtenues à Dergana près de Rouiba par CHIKHI et DOUMANDJI (2004). De même dans une forêt alluviale du Rhin, DRONNEAU (2007) mentionne l’abondance relative de *Parus caeruleus* égale à 5,2 %. En effet, la Mésange bleue est retrouvée le plus souvent en petits groupes de 2 à 4 individus qui recherchent leurs proies sur les rameaux et sous les feuilles des arbres fruitiers et aussi sur les arbres forestiers comme le pin d’Alep, le cyprès, le filao et le chêne. Dans la région bruxelloise, la Mésange bleue est très abondante où elle fréquente différents milieux arborés, les espaces verts réduits du centre ville et niche même dans les petites cavités entre les racines des hêtres (RABOSEE et al., 1995). Il faut souligner qu’en Algérie, c’est l’écologie de la reproduction de cette espèce de Pariade qui a retenu l’attention de nombreux ornithologues (MOALI et al., 1992 ; CHABI et al., 1995, 2000 ; CHABI et ISENMMANN, 1997 ; MAKHLOUF et DOUMANDJI, 2004).

La Mésange charbonnière (*Parus major*) est moins fréquente par rapport à la Mésange bleue. Cet oiseau tellien comme l’indique HEIM de BALSAC et MAYAUD (1962) est faiblement représentée dans l’Est de la Mitidja avec 0,2 % (Rouiba) et également à l’Ouest avec 0,5 % (Bourkika). Par contre, dans l’Himalaya central suivant un gradient altitudinal, *Parus major* est très abondante (94 %) dans les premiers étages de végétation (THIOLLAY, 1980). Les résultats du présent travail confirment les remarques faites déjà.

La Pie grèche méridionale (Lanius meridionalis) qui préfère les milieux ouverts est bien représentée à Cherarba avec une fréquence de 3,0 % et autant à Baraki (3,0 %). Dans le reste des stations la valeur de l’abondance relative de ce Laniidae ne dépasse guère 0,8 % comme à Oued Smar. Il faut rappeler que le biotope préféré par Lanius meridionalis correspond aux arbres et aux arbustes situés en milieu semi-ouverts présentant des plages de sol nu (HEIM de BALSAC et MAYAUD, 1962). Il est à noter qu’en Lozère, LOVATY (1992) note que les valeurs de l’abondance relative de Lanius excubitor dans les formations ligneuses basses spontanées sont comprises entre 10 et 28 %. Il faut ajouter que dans le même site d’étude du Causse Méjean, FONDERFLICK (2006) signalent que Lanius meridionalis est fréquente surtout dans les landes fermées et moins représentée dans les landes ouvertes et dans les pelouses piquetées. Les résultats de la présente étude se rapprochent de ceux de GUEZOL et al. (2002a) dans le Sud, au niveau des palmeraies de Biskra. En effet, ces auteurs font état d’une fréquence centésimale de Lanius meridionalis égale à 2,6 %. Il est rappeler que les discussions sur la biologie de la reproduction et sur l’écologie trophique de cette espèce de Laniidae seront abordées plus loin dans le même chapitre.

2006b).

Le Pinson des arbres (Fringilla coelebs) est mieux représenté dans les parties occidentale et centrale de la Mitidja par rapport à la partie orientale. Les valeurs les plus intéressantes des fréquences centésimales de ce Fringillidae sont notées à Blida avec 6,3 % et à Bourkika avec 5,2 %. En fait, les fréquences du Pinson des arbres sont faibles dans l’Est de la Mitidja près de Rouiba d’après CHIKHI et DOUMANDJI (2004) qui notent une valeur de 1,3 % seulement. Il est à souligner que même si l’espèce habite principalement les formations forestières (HEIM de BALSAC et MAYAUD, 1962, ETCHECOPAR et HUE, 1964), elle demeure très peu abondante (F = 1,65 %) dans la forêt de Baïnem (MAKHLOUFI et al., 1997). Cette faible fréquence est due probablement aux déboisements de la forêt de Baïnem durant cette dernière décennie. Il est à souligner qu’en Lozère, le Pinson des arbres est présent surtout là où différents milieux se juxtaposent comme les forêts de résineux avec des espaces plus ouverts (FONDERFLICK et al., 2001). Cette espèce de Fringillidae est également la plus abondante parmi les 34 espèces qui composent le peuplement avien du stade mature de la Chênaie-Ormaie d’Estrein au Sud de Strasbourg d’après DRONNEAU (2007).

Le Serin cini (Serinus serinus) est une espèce très abondante dans les milieux agricoles. Il fréquente les terres là où le maraîchage existe. Ainsi, ce petit Fringillidae est bien noté dans l’ensemble des stations d’échantillonnage à l’exception des alentours de Blida où l’espèce est quand même observée en dehors des relevés. Il faut noter que les valeurs des fréquences centésimales atteignent 23 % à Birtouta, 19,8 % à Chebli et 17,7 % à Boufarik. Les présents résultats se rapprochent de ceux obtenus par NATOURI et DOUMANDJI (1997) en milieu agricole près de Sidi Aïch. Ces mêmes auteurs trouvent des valeurs de l’abondance relative comprises entre 10,1 % en céréaliiculture et 31,4 % dans une oliveraie. Dans les formations ligneuses basses spontanées dans un caisse de Lozère, Serinus serinus est moins fréquente avec une valeur d’abondance relative égale à 16 % (LOVATY, 1992). Par contre dans un maquis près de l’Akfadou, MERRAR et DOUMANDJI (1997) montrent que le Serin cini fait partie des passereaux les plus fréquents avec 90,5 %. Il est à signaler qu’en automne et en hiver, le Serin cini a tendance à se regrouper en une bande mobile de 20 à 35 individus et fréquentent les parcelles de cultures maraîchères et les espaces inter-vergers d’agrumes. Cet oiseau préfère les cyprès Cupressus sempervirens pyramidalis et C. sempervirens horizontalis dispersés ça et là en brise-vent dans la Mitidja soit pour percher, s’alimenter ou même pour installer son nid. Il est à noter que Serinus serinus exploite d’autres arbres pour se reproduire telle que Schinus molle, Pinus halepensis, Olea europea et Acacia retinoides (OUARAB et al., 2007).

Le Verdier d’Europe (Carduelis chloris) est bien représenté partout dans la plaine de la Mitidja. Par rapport au pinson des arbres, le verdier fréquente les brise-vent notamment ceux à Casuarina sp., les vergers et les milieux ouverts, champs et prairies. Il faut ajouter à cela que Carduelis chloris est signalé même dans les jardins présents dans les villages de la région d’étude. Ce Fringillidae d’après ETCHECOPAR et HUE (1964), fréquente les parcs, les jardins, les bois de pins d’Alep, les oliveraies et les oasis. Ainsi dans la région d’étude, les fréquences centésimales du Verdier d’Europe sont comprises entre 1,2 % à Rouiba et 10,3 % à Blida. Au Maroc Carduelis chloris est plus fréquent (44,1

4.1.2.4. - Comparaison de trois types de milieux de la Mitidja

La comparaison du peuplement avien de trois milieux pris en considération montre que la richesse totale est plus élevée à Bourkika avec 33 espèces qu’à Rouiba (26) et Boufarik (23). Il est à noter que dans trois milieux différents en Lozère, FONDERFLICK et al. (2001) trouvent que le peuplement avien de la forêt de pins avec 31 espèces et la lande avec 32 espèces possèdent presque la même richesse alors que les pelouses constituent le milieu le plus pauvre avec 16 espèces. Ce résultat est sûrement dû d’après ces mêmes auteurs à l’artificialisation et à la faible ancienneté de ces forêts, composées en grande partie de pins noirs d’Autriche traitées en futaha régulière. Précédemment dans le présent travail, il a été dit que la richesse totale par rapport à l’Ouest de la Mitidja, apparaît plus faible dans le Centre et l’Est de cette même région à cause de la trop grande pression anthropique et de la pollution consécutive à l’industrialisation et à l’urbanisation. De même, la diversité avifaunistique est plus importante dans la station occidentale que dans les stations méridionales et orientales de la plaine de la Mitidja. Il faut souligner que l’augmentation de la pression anthropique industrielle tend non seulement à réduire le nombre des espèces avies mais parallèlement elle favorise certaines d’entre elles qui se mettent à pulluler dans une certaine mesure. Il faut rappeler qu’en Maryland, l’activité humaine par suite du découpage des forêts en petites parcelles très isolées à un effet défavorable sur l’avifaune par fragmentations de quelques espèces d’oiseaux (LYNCH et WHITCOMB, 1978). En fait, TRECA (1992) a déjà mentionné dans ses écrits que les oiseaux sont présents dans tous les milieux aussi bien naturels qu’artificiels. Néanmoins, ce même auteur précise que les modifications intervenant dans un endroit peuvent entraîner des variations croissantes ou décroissantes des populations d’oiseaux, selon leurs possibilités d’adaptation aux nouvelles conditions. Il est à mentionner que selon le programm’ aménagement côtier de la zone algéroise (P.A.C., 2004), il est signalé les tendances à la conurbation entre Alger et Bèida, en Mitidja centrale, qui intègre les petites agglomérations situées le long de cet axe. Il faut ajouter que ces mêmes tendances sont constatées entre Alger et Zeralda à l’Ouest et entre Rouiba-Réghaïa et Sidi-Moussa à l’Est (P.A.C., 2004). D’après la même publication, la prolifération de petites agglomérations dans la plaine de la Mitidja et dans le Sahel est constatée.

La similarité étudiée entre les populations d’oiseaux des trois stations, montre que la plus forte valeur est signalée entre Rouiba et Boufarik avec 65,3 %, soit 16 espèces communes. Ceci peut être expliqué par le fait qu’il y a une certaine homogénéité ou ressemblance entre ces deux milieux. Par ailleurs par rapport à la station occidentale, la similarité est de 57,1 % entre Bourkika et Boufarik soit 16 espèces communes et de 57,6 % entre Bourkika et Rouiba soit 17 espèces communes. Dans les pelouses des Couzes, BOITIER (2004) a comparé les peuplements aviens de plusieurs sites sélectionnés en
fonction de la proportion de la superficie herbacée par rapport à la superficie arbustive. Les sites étudiés concernent les Chaux Redonde, les Bruyères, les Plateaux de la Chaux et du Liauzum, le Montparge et le Thios. Il ressort, d'après cet auteur qu'une homogénéité avifaunistique évidente des sites des Bruyères, du Plateau de la Chaux, de celui du Liauzum et de Montparge. Par contre le site Thios se démarque nettement puisqu'il abrite neuf espèces d'une manière exclusive, toutes préférant les milieux buissonnants, pré-arborés ou arborés, et voit disparaître l’Alouette des champs et le Bruant pryer (BOITIER, 2004). Ce même auteur note que les peuplements aviens des pelouses des Couzes relèvent d’une certaine homogénéité des milieux exempts ou presque de surfaces ligneuses où le taux d’emboîssissement ne dépasse pas 20 %. Cette homogénéité d’après BOITIER (2004) est rompue dans le site de Thios qui présente un taux de surface ligneuse de l’ordre de 30 %. Il est à souligner qu’en Italie, SORACE et GUSTIN (2008) qui ont étudié l'homogénéisation de l'urbanisation sur la composition de l'avifaune dans 26 villes. Ces auteurs ont comparé la similitude de la multiplication des communautés d'oiseaux en différents secteurs urbains comme le centre de la ville, la périphérie interne, la périphérie externe et les terrains peu occupés par des constructions. Il paraît d'après SORACE et GUSTIN (2008) que la similitude de l’avifaune entre les villes était la plus haute dans la périphérie intérieure. Ces mêmes auteurs constatent que l’urbanisation favorise l’homogénéisation des peuplements aviens. Il est à souligner que l’environnement de la station occidentale de la Mitidja (Boukika) est plus hétérogène par rapport à ceux des stations des parties médianes et orientales. De ce fait Boukika est un milieu plus ouvert et plus aride par rapport à Boufarik et à Rouiba. Certaines espèces particulières comme Pterocles orientalis, Melanocorypha calandra, Calandrella rufescens et Oenanthe oenanthe préfèrent ce type de milieu. Dans les formations herbacées du Mont Ventoux, BLONDEL et al. (1978) citent les préférences des espèces de ce type d’habitat telle que Alauda arvensis, Oenanthe oenanthe, Anthus campestris et Anthus spinolletta. Dans le Causse Méjean FONDERFLICK et al. (2001) mentionnent également les mêmes espèces comme Anthus campestris, Alauda arvensis et Oenanthe oenanthe qui fréquentent les milieux ouverts. Il est à noter que 13 espèces communes aux trois stations de la région d’étude sont globalement des espèces sédentaires. Parmi elles, Columba livia (45,3 %), Serinus serinus (20,6 %), Passer domesticus x P. hispaniolensis (18,1 %) et Turdus merula (8,7 %) sont à citer.A Sidi Aich, des résultats similaires sont obtenus par NATOURI et DOUMANDJI (1997) qui remarquent que la composition des espèces communes à l’oliveraie, aux agrumes et aux céréales est dominée par des sédentaires qui sont Passer domesticus x P. hispaniolensis (38,7 %), Serinus serinus (31,3 %), Pycnonotus barbatus (5,9 %) et Turdus merula (5,5 %).

4.1.2.5. - Diagnostic du peuplement avien par l’analyse factorielle des correspondances
Les discussions portent sur le peuplement avien exploité par l’analyse factorielle des correspondances d’une part sur le plan qualitatif et d’autre part sur le plan quantitatif. L’analyse qualitative révèle que les espèces composant le peuplement avien de la Mitidja contribuent à l’inertie totale avec 17,4 % pour l’axe 1, avec 12,9 % pour l’axe 2 et 12,1 % pour l’axe 3. Ces espèces rassemblées en 10 groupes, sont réparties dans le plan 1-2. Il
est à noter que BLONDEL et al. (1978) a effectué une analyse factorielle des correspondances sur 58 espèces et 39 états de variables afin de parvenir à une perspective synthétique des normes de distribution de l’avoine du Mont Ventoux dans l’espace écologique. Ces auteurs mentionnent selon des axes que les deux premiers correspondent respectivement à 39 % et 24 % de l’inertie totale du nuage. Ces mêmes auteurs signalent que l’axe 1 explique à lui seul une partie importante de la détermination du nuage dont dix espèces contribuent pour 51,5 %. Cependant l’axe 2 absorbe 24 % de l’inertie du nuage et oppose l’ensemble des formations ligneuses (BLONDEL et al., 1978). Il est à mentionner qu’en Lozère FONDERFLICK et al. (2001) ont étudié les espèces représentatives du peuplement avien du Causse Méjean par une A.F.C. Ils montrent grâce à cette analyse que l’axe 1 contribue avec 32,4 % à l’inertie totale et traduit le pourcentage de recouvrement de la strate arborée et dans un moindre part le pourcentage du recouvrement en cailloux. Par contre le deuxième axe qui intervient pour 13,7 %, traduit davantage le pourcentage de recouvrement de la strate buissonnante. Dans la présente étude, le groupe A ne renferme que les espèces omniprésentes tels que le Merle noir et le Moineau hybride. Il faut cependant que 3 espèces soient présentes dans presque toutes les stations en dehors d’une seule. Ce sont la Mésange bleue, le Serin cini et le Verdier d’Europe. Ce sont des espèces sédentaires comme celles du groupe A. Le groupe B rassemble les espèces vues qu’au niveau du Marais de Réghaia. Ce sont des espèces qui fréquentent les plans d’eau comme le Canard colvert, le Flamant rose, le Fuligule morillon, le Busard des roseaux, la Foulque macroule, la Moutette rieuse, le Goéland brun, le Goéland d’Audouin et la Locustelle luscinioïde. La plupart de ces espèces sont migratrices. Globalement, les groupes C, D, E, F, G et H comprennent peu d’espèces qui ne sont vues que par la plupart du temps que dans une seule station. Cependant, le groupement I qui ne rassemble que les oiseaux vus à Blida, est représenté par des espèces rares ou des migrateurs de passage comme le Milan noir, le Cochevis de Thékla, le Pipit des arbres, la Fauvette passerinette, le Pouillot fitis et le Choucas des tours. Enfin le groupement J concerne les espèces rares notées à Bourkika comme la Buse variable, le Milan royal, le Ganga unibande et le Traquet moteux. Il est à mentionner que dans le Morvan, MARION et FROCHOT (2001) remarquent lors de l’analyse du peuplement avien du Sapin de Douglas, que l’axe 1 sépare les espèces d’oiseaux suivant l’ouverture du milieu, au pôle négatif où ils notent les espèces de milieu ouvert (Pipit farlouse), au centre celles de milieu semi-ouvert (Fauvette à tête noire) et au pôle négatif, celles de milieu fermé (Mésange noire). Par contre ces auteurs, mentionnent que l’axe 2 place au pôle positif les espèces typiques des boisements feuillus (Pouillot siffleur), au centre les ubiquistes (Pinson des arbres) et au pôle négatif celles des boisements résineux (Roitelet huppé). Il faut ajouter que MARION et FROCHOT (2001) concluent que les espèces d’oiseaux se regroupent bien suivant leur milieu préférentiel.

Pour ce qui concerne l’analyse factorielle des correspondances qui tient compte de l’aspect quantitatif et qui porte sur les espèces à petits cantons, la contribution à l’inertie totale est de 21,5 % pour l’axe 1, 17,0 % pour l’axe 2 et 15,4 % pour l’axe 3. La représentation graphique des axes 1 et 2 montre que les 12 stations se retrouvent dispersées dans les 4 quadrants. Le quadrant I renferme Chebli, Ain Naadja, Birtouta et Boufarik. Dans le quadrant II, il n’y a que Baraki et Oued Smar. Au sein du quadrant III seule la station de Meftah est présente. Enfin dans le quadrant IV, 4 stations voisinent :
Rouiba, Bourrika, Cherarba et Réghaïa. Il faut ajouter que la station de Blida se place entre les quadrants I et II. La répartition des stations entre les quatre quadrants s’explique par les différences de composition en espèces d’oiseaux. En fonction du peuplement avien de différents milieux en Grande Kabylie, MOALI (1999) trouve pour la formation de l’axe 1, trois biotopes qui contribuent le plus, soit les falaisas et les éboulis avec 40,8 %, les milieux ouverts de montagnes avec 30,1 % et la cédraie avec 12,7 %. L’axe 1 correspondrait à la variable ouverture des milieux qui montrent une succession allant depuis les milieux fermés comme la cédraie, des falaisas et éboulis jusqu’aux milieux de plaines avec des coordonnées négatives d’après le même auteur. Dans le plan factoriel (1-2) du présent travail, 7 nuages de points sont observés. Chacun d’eux représente le regroupement des espèces aviaires particulières à une seule station. Les espèces qui se rapprochent le plus d’une station prise en considération possèdent les effectifs les plus importants. Dans le quadrant I, les groupes A et B sont présents. A voisine avec Chebli, constitué d’une seule espèce, soit la Perruche à collier dont les effectifs sont importants par rapport aux autres stations. Le nuage de points B se situe près de Boufarik, formé par le Serin cini, espèce à effectif élevé, le Pic épeichette et le Merle bleu. Les deux dernières espèces citées sont rares et mentionnées seulement de Boufarik. Dans le deuxième quadrant, 2 autres groupes C et D sont mentionnés. Le premier est formé de 6 espèces qui gravitent autour de Blida dont le Pinson des arbres qui est bien représenté en effectifs. Les 5 autres espèces sont rares et ne sont signalées qu’à Blida. Ce sont la Cochevis de Théklia, le Pipit des arbres, la Fauvette passerinette, le Pouillot fitis et le Choucas des tours. Le groupe D se rapproche de Baraki formé de la Tourterelle des bois qui est bien notée et d’espèces rares comme la Poule d’eau, le Gobe mouche noir et le Bruant zizi. Dans le quadrant III, il n’y a que le groupement E, lequel est formé de 3 espèces typiques de Meftah comme la Perdrix gambra avec un grand effectif, le Rollier d’Europe et le Loriot d’Europe. Enfin le quadrant IV renferme les groupes F et G. Le nuage de points F se compose d’espèces proches de Bourrika surtout l’Alouette des champs alors que le Ganga unibande et le Traquet motteux demeurent rares. Le groupe G est constitué d’espèces proches de Rouiba dont le Pigeon biset domine tandis que la Bécasse des bois reste rare. Les premiers résultats sur les peuplements aviens exploités par l’analyse factorielle des correspondances (A.F.C.), s’appuient sur des travaux faits en milieu forestier. En effet en 1982, THEVENOT a utilisé une A.F.C. pour étudier la répartition des espèces aviaires au niveau des matorrals et des forêts. Cet auteur remarque la présence de 8 groupements d’espèces répartis dans divers milieux appartenant à différents étages bioclimatiques. Par ailleurs MULLER (1988) a appliqué une A.F.C. par rapport à la répartition des espèces en fonction de l’âge de la pinède et de la hauteur des arbres. Il constate que les premiers critères de sélection de l’habitat des oiseaux nicheurs sont l’âge et la hauteur des arbres dans ce type de boisement. Il faut rappeler qu’à Sidi Aich, NATOURI et DOUMANDJI (1997) ont étudié le peuplement avien dans trois stations agricoles différentes. Ils font ressortir grâce à une analyse (A.F.C.) trois groupes, A, B et C. Le groupe A correspond à la parcelle de céréales. Cette dernière renferme des espèces granivores comme le Moineau hybride, le Chardonneret et la Caille des blés et des insectivores comme le Cisticole des joncs. Le groupe B selon ces auteurs correspond à l’oliveraie et il rassemble 4 espèces, soit la mésange bleue, le Gobe-mouche gris, le Rouge-gorge et le Merle noir. Quant au groupe C, il correspond aux agrumes associés à 8
espèces avienues : le Bulbul des jardins, la Mésange charbonnière, la Fauvette à tête noire, le Verdier d’Europe, le Grimpereau des jardins, le Pinson des arbres, le Torcol fourmiliier et le Serin cini (NATOURI et DOUMANDJI, 1997). Il est à mentionner que MOALI (1999) trouve en fonction de l’axe 1, l’existence de quatre nuages de points qui correspondent aux espèces rupicoles, à celles des friches montagnardes, à celles des habitats ouverts de plaine et à celles des habitats buissonneux et boisés de basse altitude, largement thermophiles comme le maquis dégradé et les oliveraies. Les espèces qui correspondent aux friches montagnardes sont l’Accenteur alpin, le Merle bleu, le Moineau soulie et le Pipit rousseline. Les espèces des habitats ouverts de plaine sont le Cisticole des joncs, la Pie-grièche grise et le Pigeon biset. Il faut ajouter que les Sylvidae dominent dans le quatrième groupe d’espèces (MOALI, 1999).

4.2. – Discussions sur les espèces d’oiseaux introduites ou en pleine expansion

Les discussions sur les espèces d’oiseaux introduites ou en pleine expansion concernent la Perruche à collier, la Tourterelle turque, le Pigeon ramier et le Héron garde boeuf.

4.2.1. – Cas de la Perruche à collier Psittacula krameri

Les discussions sur Psittacula krameri portent sur le dénombrement de ses effectifs, le suivi de ses populations et sa répartition géographique. Elles concernent également la progression des effectifs de la Perruche à collier dans la région, ses activités et son comportement trophique.

4.2.1.1. - Introduction de Psittacula krameri en Algérie

Pour ce qui concerne cette espèce de Psittacidae présente en Algérie, elle semble renfermer plusieurs sous-espèces non encore bien définies. En partie certains individus seraient originaires du Sénégal (COLLAR, 1997). Il est vraisemblable que la majorité d’entre eux, appartiennent à la sous-espèce nominative *P. k. krameri*. Comme autre hypothèse, les Perruches provenant des volières feraient partie de la sous-espèce *P. k. parvirostris* et de celles de *P. k. manillensis*, de *P. k. borealis*, ou des hybrides entre les formes africaines et asiatiques. Il faut rappeler que dans la région d’étude, nous avons observé plusieurs fois des individus à bec entièrement rouge typique des Perruches asiatiques comme il est décrit par CRAMP et al. (1994). Quoi qu’il en soit, la Perruche à collier fait désormais partie de l’avifaune algérienne. Il est à mentionner que cette espèce est signalée au Maroc où l’espèce est vue dans plusieurs localités (BERGIER et al., 2000; THEVENOT, et al., 2003). Probablement en Tunisie, cette espèce existe, mais la littérature ne la mentionne pas (ISENMANN et al., 2005).

4.2.1.2. – Effectifs des populations, distribution dans la région d’étude et ailleurs en Algérie

progression de cet oiseau vers le Sud et l'Ouest de la capitale semble moins importante que vers l'Est. En Egypte *Psittacula krameri* est commune dans plusieurs villes comme le Caire où l'espèce est répandue autour des champs de l'île de Gezira en petits groupes pouvant atteindre 8 individus (MILES, 1998). Durant l'année 2005, la Perruche à collier est signalée à Ain Naadja (1 individu), à Bach Djarah (8) et à Méftah (100). Puis en 2006, l'espèce est mentionnée en plus grands nombres comme à Sidi Moussa (15), ou plus loin comme à Ahmer El Ain (1), à Hadjout (2 à 3), à Bourkika (3) et à Blida (4). En 2007, au sud de Boufarik, des cris de la Perruche à collier sont entendus. Il est à mentionner que dans les plaines orientales marocaines, *Psittacula krameri* est signalée dans les plaines de Melilla par Abad et Espinar cités par BERGIER et al. (2005).

En dehors de la région d'Alger et dans ses environs immédiats, la Perruche à collier est notée en 2001 dans une chênaie près de Yakouren (Tizi Ouzou : 36° 43' N., 4° 03' E.). Dans la même région, 2 individus sont observés en 2004 dans la vallée de l'oued Sébau. A Mila, *Psittacula krameri* est signalée avec 2 individus en 2002 et 14 individus en 2005 (36° 16' N., 6° 12' E.). A la limite du flanc méridional de l'Atlas saharien, 1 Perruche à collier est vue dans le jardin de Landon à Biskra (34° 50' N., 5° 45' E.). Par ailleurs, 8 Perruches à collier sont remarquées dans les gorges de la Chiffa (2005) (36° 21' N., 2° 45' E.). Il faut ajouter que la dernière mention de la présence de l'espèce en Algérie est faite en 2007 dans la ville d'Annaba (36° 47' N., 7° 3' E.) où plusieurs dizaines de Perruches à collier sont probablement en train de s'installer et de s'y reproduire. Il est à noter qu'en Bulgarie, la Perruche à collier est mentionnée en petits groupes de 4 individus vus en 1996 au vol au bord de la mer (NANKINOVA et POPOV, 1997). Par contre en Bretagne, ce sont d'importantes bandes de *Psittacula krameri* composées de 35 à 1530 individus qui sont observées (PITHON et DYTHAM, 1999a). Mais les groupes les plus faibles en effectifs d'après ces mêmes auteurs se composent de 1, de 4 et de 11 individus.

4.2.1.3. - Progression des effectifs de la Perruche à Collier dans la région d'étude

Entre 1996 et 2002 la population de la Perruche à collier présente dans la région d’étude passe de 4 à 46. En 2002, elle correspond à 10,9 % par rapport à la population recensée en 2006. Ce taux atteint 67,1 % en 2003 soit 283 individus et 89,1 % en 2005 (376 individus). Les effectifs de la population de Psittacula krameri recensés en 2006 est de 422 individus. Il est à noter qu’en grande Bretagne, la population de la Perruche à collier estimée en octobre 1996 est de 1508 individus (PYTHON et DYTHAM, 1999a). Elle atteint un effectif de 1880 individus en août 1997, correspondant à un accroissement de19,8 % et un effectif de 2060 individus en septembre 1998, soit un accroissement de26,8 % (PYTHON et DYTHAM, 2002). Ces auteurs considèrent que la population de cette espèce est relativement petite et que son expansion est lente bien que ses effectifs sont estimés à 2060 en 1998. Différentes raisons sont évoquées pour expliquer la faiblesse de l’extension Les observations faites dans le cadre du présent travail ne font que confirmer celles de PYTHON et DYTHAM (2002). Pourtant Psittacula krameri possède de grandes capacités de vitesse de vol qui se situe entre 120 et 160 km/heure. En effet, les effectifs les plus importants recensés dans la région d’étude concernent les périodes 2005 et 2006 qui correspondent à des pourcentages compris entre 70,8 et 76,2 % par rapport à l’ensemble des contacts eus depuis 1990 jusqu’à 2006. Pendant les années 2000 et 2004 les taux des contacts-unités sont compris entre 26,9 et 28,4 %. Cet accroissement important des contacts-unités confirme la progression numérique de Psittacula krameri dans le Littoral et le Sahel algérien et dans la plaine de la Mitidja. Il est à noter que sur la côte bulgare de la Mer Noire, le climat favorable, l’abondance de la nourriture et l’existence de cavités pour la nidification constituent autant de raisons pour expliquer la multiplication de la Perruche à collier en pleine nature (NANKINOV et POPOV, 1997)

4.2.1.4. - Activité de Psittacula krameri par tranche horaire et en fonction des mois

La Perruche à collier est très active le matin entre 6 h et 8 h correspondant à un total de contacts égal à 94 (36,3 %) et le soir entre 16 h et 18 h égal à 64 contacts (24,7 %). Cependant, Psittacula krameri se manifeste très rarement entre 10 h et 12 h avec à peine 13 contacts (5,0 %) et entre 12 h et 14 h avec 14 contacts (5,4 %). Il faut rappeler que le nombre moyen de contacts par jour est de 1,4 entre 6 h et 8 h et de 1 contact entre 16 h et 18 h. Il faut ajouter que la Perruche à collier est très bruyante. En Grande Bretagne, elle est très active entre 6h 00’ et 9h 00’ et entre 16h 00’et 18h 00’ surtout lorsqu’elle est en
quête alimentaire (CRAMP et al. 1994). Dans le même pays, PITHON et DYTHAM (2002) écrivent que les plus importants effectifs recensés dans les perchoirs sont notés en automne. Ces auteurs ajoutent que la population de l’Ouest de Londres est grande et en croissance, alors que celles du Sud-Est de Londres et de Thanet sont plus petites et n’augmentent pas. Il est à souligner d’après PETERSON et al. (1986) que la Perruche à collier traîne souvent sa présence par ses cris stridents et rauques. Effectivement, dans la région d’étude, sur un total de 159 manifestations, Psittacula krameri est surtout mentionnée au vol en train de crier (57,2 %). Quant au cri seul, il représente environ 30,2 % des manifestations de présence de l’espèce. Il est à noter que la majorité des vols de Psittacula krameri se font vers la plaine, orientés vers le S-SE (46,3 %) et le S-SW (13,5 %). Ce sont des déplacements pré-alimentaires. Il est utile d’attirer l’attention sur le fait qu’à l’approche du crépuscule, la Perruche à collier semble rejoindre ses dortoirs en plusieurs endroits à Alger. En effet, l’Algérois notamment le Sahel offre des falaises et des milieux accidentés avec des trous, des vieux arbres tels que des eucalyptus, des ficus, des pins, des cyprès, des pacaniers et des tipas qui présentent des cavités, sites potentiels qui peuvent servir de gîtes et plus tard de lieux de nidification. Précisément à propos de la reproduction, en Inde la formation des couples de Psittacula krameri intervient entre septembre et décembre et le nichage en février. À ce moment les ovaires et les oviductes apparaissent bien formés (SAILAJA et al., 1988). Ces mêmes auteurs ajoutent que durant la reproduction qui se déroule en hiver, la Perruche à collier ne concurrence jamais les nids des autres espèces cavernicoles. En effet, en Inde la Perruche à collier, fréquente les régions boisées caduques, les jungles secondaires légères et les brousses semi-désertiques (PRIN, 1991). Elle n’hésite pas à venir dans les jardins, les vergers et même dans les petites exploitations à polycultures proches des habitations. Elles sont présentes en grands nombres autour des plus grandes villes du Nord ajoute le même auteur. Il est à souligner qu’au Pakistan, SARWAR et al. (1989) se sont intéressés à la distribution et à l’abondance des cavités des arbres exploités par les perruches dans les agro-écosystèmes du Pendjab Central. Il ressort d’après ces auteurs que ces espèces de Psittacidae préfèrent nidifier dans des cavités présentes dans les plantations qui se localisent aux bordures des avenues des villes, dans les jardins et dans les parcs. En Belgique, les mêmes constations sont faites par STRUBBE et MATTHYSEN (2007) qui notent que les perruches à collier sont abondantes dans les forêts ou les parcs entourés par des maisons et de grands immeubles à hautes importantes. Ces auteurs précisent que les effectifs des perruches sont fortement associés à la densité des cavités naturelles offertes par le support végétal.

Selon les mois, la Perruche à collier se manifeste beaucoup plus en avril et en mai par rapport aux autres mois. En avril la moyenne journalière des contacts est de 5,3. Elle est plus élevée en mai avec une moyenne égale à 7 contacts. Il faut noter que Psittacula krameri tend à se regrouper en automne et en hiver pour se mettre dans des abris et bénéficier d’une certaine protection par rapport à certains facteurs climatiques comme le vent et la pluie. Il est à mentionner que les aléas climatiques tels que le gel et le brouillard sont mis en avant par TAMARA et ARNHEM (1996) comme des facteurs pouvant induire une importante mortalité dans la population bruxelloise fémale de la Perruche à collier. Ce n’est pas le cas dans la région d’étude où les températures demeurent clémentes tout au long de l’année sur le Littoral et dans la partie orientale de la Mitidja. Cependant comme
autre facteur de mortalité et de régulation de la population de *Psittacula krameri*, la prédateion due aux rapaces, en particulier des chouettes dans le présent milieu mérite de reti
trir l’attention du chercheur. Mais la plus grande cause de réduction des effectifs de la Perruche à collier, ce sont les captures des adultes surtout pendant la période de reproduction. Il n’est pas possible de parler de braconnage, car aucun texte de loi ne protège cette espèce en Algérie. Il faut ajouter que comme autres facteurs de mortalités des perruches à collier, les infections respiratoires peuvent être signalées. Justement c’est le cas des perruches importées au Japon lesquelles sont contaminées par les Herpesvirus (TSAI, 1993), ou celles vivant en Belgique et qui sont infectées par les adénovirus (DESMIDT et al., 1991).

4.2.1.5. - Comportement trophique de la Perruche à collier

L’ensemble des observations effectuées sur le comportement trophique de la Perruche à collier depuis 1996 jusqu’en 2006, montre que l’espèce a un régime alimentaire phytophage varié qui correspond à un indice de diversité de Shannon Weaver élevé (H’ = 5,1 bits). Effectivement *Psittacula krameri* se nourrit aux dépens de 44 espèces végétales ou de divers fragments prélevés par l’oiseau tels que les fruits, les graines, les fleurs, les feuilles, les jeunes bourgeois et même les thalles de lichen installés sur certains arbres (BENDJOUDI et al., 2005b, BENDJOUDI et al. 2006). En hiver dans le Jardin d’essai du Hamma *Psittacula krameri* se nourrit de dattes de *Phoenix dactylifera* et de fruits de *Livistonia chinensis* et de *Livistonia humilis*. Pourtant ETCHECOPAR et HÜE (1964) écrivent que *Psittacula krameri* consomme des dattes mais sans autre précision sur le nom de la plante-hôte. Dans la présente région d’étude, dès la fin de janvier la Perruche s’attaque aux fleurs de Rosaceae, d’abord de l’amarandier *Prunus amygdalus*, puis un à deux mois plus tard à celles du pommier *Malus pumila*, du poirier *Pirus communis* et du pêcher *Prunus persica*. Il faut rappeler qu’une autre espèce assez voisine appelée Perruche à collier de l’Inde introduite en Europe fait des dégâts notables sur pommes dans les vergers (Malus pumila) (TAVISTOCK, 1928). Dans le Sahel algérois et dans la partie orientale de la Mitidja, pendant la période verno-estivale, la Perruche à collier ingère tantôt le fruit en entier notamment les mûres et tantôt elle gratte la pulpe des nèfles vertes et mûrisantes (*Eriobotrya japonica*), des dattes (*Arecastrum romanoffianum*)et des pêches (*Prunus persica*) sans en ingurgiter les graines. En fait la consommation des bïbâses d’*Eriobotrya japonica* se poursuit jusqu’au début de juin, parallèlement à celle des mûres de *Morus alba* et de *Morus nigra*. Durant l’été, elle mange des graines des résineux comme celles de *Pinus halepensis*, de *P. pinaster* et de *P. pinea* qu’elle extirpe grâce à son bec crochu. L’observation de l’ingestion de graines dans la région d’étude par la Perruche à collier confirme celles de ETCHECOPAR et HÜE (1964). Il est à signaler que dans la région d’étude, cette espèce n’est jamais vue en train de se nourrir au sol. Effectivement en Grande Bretagne, *Psittacula krameri* s’alimente rarement au sol comme le mentionnent CRAMP et al. (1994). Selon ces auteurs, elle se nourrit seulement sur les tables des oiseaux, dans les jardins et sur les récoltes agricoles. Il faut rappeler que dans le Littoral algérois et le Plateau de Belfort *Psittacula krameri* mange aussi des fleurs comme celles de *Tipa tipuana* (syn. *Tipuana speciosa*) et de *Chorizia speciosa* et des fruits notamment de ceux de Rosaceae comme les pêches, lesabricots et
les merises. Egalement, ellecomplète son menu par des graines du thuya Callitris articulata et par celles de ficus (Ficus retusa). Plus tard, à la fin de l’été et au début de l’automne aux abords de Hadjout et de Bourkika, la Perruche à collier s’attaque aux baies de Vitis vinifera. Du fait de ses faibles effectifs, actuellement Psittacula krameri n’est pas encore considérée comme nuisible à l’égard des plantes cultivées en Algérie. Mais la situation pourrait changer si leur nombre venait à s’élèver de façon trop importante. Dans d’autres pays où elle a été introduite et où elle prolifère (Grande Bretagne, Allemagne, Belgique, France, États-Unis), la Perruche à collier s’est faite remarquée déjà par ses déprédateurs sur les arbres fruitiers (TAVISTOCK, 1928; FORSHAW, 1989; JUNIPER et PARR, 1998). En Inde, l’un de ses pays d’origine, elle peut provoquer d’importants dégâts sur les cultures (SHIVANARAYAN et al., 1981; COLLAR, 1997). Dans ce même pays, DHINDSA et al. (1992) ont effectué sur la culture de mais un système de protection des épis grâce à des emballages en toile forte afin de limiter les dégâts dus à Psittacula krameri. Ces auteurs montrent que les pertes sur les épis recouverts sont réduits de 97 % dans les champs et de 82 % dans des expériences volières. Étant caché et camouflé, les épis enveloppés ont échappé à l’attention des oiseaux et de ce fait n’ont pas été endommagés. Il est à rappeler qu’en automne Psittacula krameri se nourrit de petites dattes vertes entières de Washingtonia robusta et de W. filifera et qu’elle s’attaque à des fruits aussi durs que les noix du pakanier ou du noyer commun, certes d’un apport énergétique élevé, mais dont l’ouverture demande elle-même une dépense d’énergie notable. Nos observations sur le comportement trophique de la Perruche à collier dans la région d’étude sont en accord avec celles d’autres auteurs comme TAVISTOCK (1928), ETCHECOPAR et HÛÉ (1964), ALI et RIPLEY (1981), SHIVANARAYAN et al. (1981) FORSHAW (1989), CRAMP et al. (1994) et JUNIPER et PARR (1998), tant dans l’aire de distribution naturelle de l’espèce que dans les régions où elle a été introduite. Elles illustrent bien la plasticité de cette espèce qui se montre capable de tirer profit des espèces végétales les plus diverses, même absentes dans son pays d’origine. Il faut rappeler que dans la région d’étude, l’abondance relative des espèces végétales par type d’organe ingéré par la Perruche à collier montre la dominance de la consommation des fruits à 100 % en mars, en mai et en décembre. Par ailleurs, l’ingestion des graines vient par la suite avec une abondance relative de 37,5 % en août. Elle est suivie par les fleurs dont la valeur maximale notée en septembre est de 33,3 %. La diversité alimentaire de la Perruche à collier est la plus grande en été, de juin à août avec un maximum de 16 espèces, et aussi presque de même façon durant la période fraîche et humide allant de décembre à février avec un maximum de 15 espèces. Il faut souligner qu’entre le début de novembre et la fin de février, les perruches à collier consomment même des dattes encore petites et vertes, peut-être parce que les autres sources de nourriture ne sont plus très abondantes. Il est à mentionner qu’en Inde durant l’hiver les perruches à collier se nourrissent principalement aux dépens des pois (Cajanus cajan) qui fournissent une alimentation très riche en calcium (SAILAJA et al., 1988). Par contre selon ces auteurs, Psittacula krameri s’alimente de graines de céréales à d’autres époques de l’année. Enfin, dans la région d’étude, les perruches n’exploitent les autres espèces végétales que pendant un temps limité dans l’année, soit quatre mois en période hivernale pour le palmier dattier (Phoenix dactylifera)et pour le lilas de Perse (Melia azedarach), trois mois au plus pour certaines espèces botaniques et même moins d’un mois pour d’autres

4.2.2. — Discussions sur le cas de la Tourterelle turquoise Kaleoptea decaocto

Les discussions sur la Tourterelle turquoise portent sur son expansion, sa répartition et sa place au sein des autres espèces de Columbidae.

4.2.2. - Expansion de Steptopelia decaocto en fonction des années

4.2.3. - Répartition de la Tourterelle turque dans la région d’étude

A partir des résultats des échantillonnages fréquentiels progressifs effectués entre 2004 et 2006 et selon les prospections et observations faites dans la région d’étude, il semble que la Tourterelle turque colonise davantage les parties septentrionales et orientales de la plaine de la Mitidja que sa partie occidentale. Les fréquences les plus fortes sont notées surtout à Oued Smar avec 11,6 % et à Cherarba avec 4,8 %. Par contre les plus faibles valeurs sont comprises entre 1,7 % à Réghaïa et 3,3 % à Chebli. Cependant les stations de Baraki, de Birtoua, de Boufarik et de Blida présentent des fréquences égales à 0 %. Il est à mentionner que la Tourterelle turque était à l’origine répandue en Asie méridionale (SUEUR, 1994). Elle occupait autrefois d’après ce même auteur une très petite région au sud-est de l’Europe. Une spectaculaire progression récente de sa distribution à travers le continent l’a conduit à peupler actuellement toute la France (SUEUR, 1994).

présent travail, il semble que l’espèce préfère les milieux suburbains, qu’elle se nourrit et se reproduit à proximité des habitations. Elle est absente dans les bosquets hors des villes et dans les parcelles agricoles. Effectivement, les relevés dans un quadrat réalisés en milieu agricole près de Baraki mettent en évidence non seulement l’absence de la Tourterelle turque, mais aussi la présence du Pigeon ramier (4 couples), de la Tourterelle des bois (7 couples) et du Pigeon biset (7,3 couples). En 1985, CRAMP mentionne que la Tourterelle turque a une nette prédilection pour les endroits proches des noyaux urbains où elle fréquente les parcs, les avenues et les jardins là où il y a des arbres. Cet auteur ajoute que l’espèce est liée à l’homme et aux diverses activités humaines si bien qu’il n’est pas rare de la trouver dans les mangeoires des animaux, dans les greniers, dans les granges et dans autres types d’endroits où la nourriture est abondante. En Italie, QUADRELLI (1988) remarque que Streptopelia decaocto fréquente les petits parcs tout autour des zones urbaines dont la densité est estimée à 2 couples sur 10 hectares. Cet auteur précise que dans le complexe du territoire urbain environ 30 couples sont présents à raison de 1 couple sur 10 ha. Il est à mentionner qu’une étude faite en Estrémadure (Espagne) montre que sur 125 points où la présence de Streptopelia decaocto s’est avérée avec ou sans nidification, seuls 31 se situent en zones urbaines, alors il y a que 94 points (75,3 %) se trouvent dans des zones rurales (CAMARERO et HIDALGO de TRUCIOS, 2001). Par ailleurs l’extension de la Tourterelle turque dépend des distances qui séparent les villes et les villages voisins. Son absence est remarquée au centre de la Mitidja entre Birtouta, Boufarik et Blida. Effectivement cette zone est peu habitée et surtout elle est caractérisée par de vastes vergers d’agrumes et de rosacées fruitières. Il est à souligner que l’habitat de la tourterelle turque dépend des activités humaines (HERMANT et al., 1997). Dans la région d’Annaba, d’après BENYACOUB (1998) l’espèce a occupé essentiellement les quartiers résidentiels du Nord et du Nord-Est de la ville. Ceux-ci, implantés sur des collines basses, sont surtout constitués de villas avec des jardins et de vieux arbres sur lesquels l’espèce niche ou se poste pour chanter (BENYACOUB, 1998). Au Maroc, c’est dans les parties nouvelles des agglomérations que son implantation a été la plus rapide (BERGIER et al., 1999). En Europe qu’elle a envahi depuis plus d’un demi-siècle, elle est devenue commune aux abords de bien de fermes, de villages et de banlieues (HUME et al., 2003). En dehors des stations d’échantillonnage, la Tourterelle turque est signalée aussi bien à l’intérieur de certaines localités que dans leurs parties péri-urbaines comme El Djemhouria (2006), Ouled Chbel, Hraoua (Ain Taya) et Tessala El Merdja. D’autres mentions de présence sont à faire comme dans les villes de Chiffa, d’Ahmer El Ain, de Larbâa et des Eucalyptus.

4.2.3. – Discussions sur le cas du Pigeon ramier *Columba palumbus*

Dans le cadre de ce paragraphe, l’attention est retenue par l’évolution des effectifs de *Columba palumbus* en fonction du temps et par leurs déplacements

4.2.3.1. - Evolution des effectifs de *Columba palumbus*

Dans la plaine de la Mitidja, le Pigeon ramier existe un peu partout. En effet il place
ses nids dans les arbres des jardins publics et même sous les toits des immeubles comme à Oued Smar, Bordj El Kiffan, Dar El Beida et Rouiba. Il faut rappeler que cette espèce est très fréquente surtout à Baraki, à Ain Naadjia, à Oued Smar et à Meftah. En Egypte, *Columba palumbus* apparaissait comme un oiseau très rare puisque le seul individu observé l’a été dans les années 1990 (MILES, 1998). Il faut rappeler que dans une station d’étude dans la partie orientale du Sahel algérien la densité de cette espèce en 1992 n’est que d’un seul couple sur 10 hectares (BENDJOUIDI, 2005). Par contre en 2006 le nombre de couples de cette même espèce s’est élevé à 57,3 sur 10 ha. Ainsi sa densité a connu un essor important entre 1992 et 2006. Dans différents milieux forestiers de la Kabylie des Babors, BELLATRECHE (1994) signale que les densités de la Palombe sont relativement faibles puisque le nombre de couples varie entre 0,02 et 0,35 sur 10 ha. En France la population de la Palombe s’accroît et il semble que ce soit lié au développement d’une population sédentaire, phénomène attribué à l’augmentation de la céréaliiculture (JULLIARD et JIGUET, 2005). Par contre, dans une Chênaie-Ormaie du Rhin, la densité du Pigeon ramier reste très faible par rapport aux présents résultats puisque le nombre de couples noté par DRONNEAU (2007) atteint à peine 0,71 sur 10 ha. Il est à mentionner que dans le présent travail, l’essor rapide de la densité de *Columba palumbus* est remarqué surtout entre 2001 avec 18 c. et 2002 avec 48,5 c. En effet, l’expansion de la densité du Pigeon ramier s’est manifestée par des vols de nombreux individus, quelquefois de plus d’une centaine de palombes remarquées entre les limites du Sahel algérien et de la Mitidja. Effectivement en mars à partir de 18 h 30, plus de 120 pigeons viennent se regrouper chaque jour sur les vieux Eucalyptus dispersés dans les jardins et les parcs de la région d’étude. Il est à noter que dans la subéraie de la Ma’amora au Maroc, CHERKAOUI et al. (2007) notent que le Pigeon ramier se retrouve principalement dans les secteurs boisés avec des effectifs élevés en mars.

4.2.3.2. - Déplacements des populations de *Columba palumbus* vers les lieux trophiques en Mitidja

Le recensement des populations du Pigeon ramier entre les mois de mars et de mai révèle que le plus grand nombre est mentionné en mars avec 322 individus, suivi par mai avec 72 individus et par avril avec 66 *Columba palumbus*. Il faut rappeler qu’en mars les effectifs les plus importants sont enregistrés le matin entre 7 et 8 h avec 201 individus (62,4 %) et entre 6 et 7 h avec un effectif de 100 individus (31,1 %). Il est à souligner que LYNES a remarqué dans le Moyen Atlas des vols allant depuis les forêts vers les plaines pour aller s’alimenter entre 6 et 15 h (HEIM de BALSAC et MAYAUD, 1962). Il faut ajouter que HUME et al. (2003) remarquent que la Palombe se nourrit entre 8 et 16 heures et s’accorde généralement une pause perchée vers midi ou 13 h par temps chaud. Il est souligné qu’en Mitidja en avril, les effectifs semblent être moins importants par rapport à ceux de mars dont le maximum est noté entre 7 et 8 h avec 29 individus (43,9 %). Il est suivi par un nombre de 24 pigeons ramiers enregistré entre 10 et 11 h (36,4 %). Pour ce qui du mois de mai, les déplacements trophiques des pigeons ramiers sont rares le matin, illustrés seulement par un petit groupe de 4 individus entre 7 et 8 h (5,6 %). De plus forts
effectifs sont notés entre 11 et 12 h avec 41 individus (57 %) et entre 12 et 13 h avec 20 individus (27,8 %). Il est à noter que le Pigeon ramier reste active même après le crépuscule, ce qui est rapporté par SVAŽAS (2001) dans la région orientale de la Baltique.Cet auteur a constaté durant 6 années (1985-1990) à 9 reprises des déplacements nocturnes du Pigeon ramier qui ont été effectués en période postnuptiale. Le même auteur avait mis à profit l’éclairage puissant de certains complexes de serres agricole pour étudier la migration post-nuptiale nocturne. Il est à mentionner qu’en dehors de la zone de Baraki, des passages de groupes de Columba palumbus sont observés maintes fois dans plusieurs endroits de la plaine (BENDJOUDI et DOUMANDJI, 2007).

Généralement les déplacements de Columba palumbus au cours des quelques heures de l’après-midi concernent les pigeons qui quittent les lieux tropiques représentés par les champs et les vergers de la Mitidja et peut être même par les maquis du flanc Nord de l’Atlas tellien et qui rejoignent leurs dortoirs. Il faut rappeler que le Pigeon ramier reste farouche en pleine campagne où il est d’ailleurs chassé (HUME et al., 2003). Mais il peut devenir très confiant dans les parcs urbains ainsi que durant la période de reproduction.

Entre mars et mai, Columba palumbus se déplace surtout suivant 3 directions, soit le sud, le sud-ouest et le sud-est. En mars 68,0 % des effectifs du Pigeon ramier se dirigent depuis Baraki vers le sud, soit vers Bentahla, Sidi Moussa et Bougara. En avril avec 56,1 %, les vols vers le sud sont moins marqués qu’en mars. Par contre en mai, Columba palumbus se déplace davantage vers le sud-ouest (62,5 %). Il est à souligner que les vols des pigeons ramiers vers le sud jusqu’à Bentahla, Sidi Moussa et Larbaa et vers le sud-ouest en direction de Birouta et d’Oued El Allegh sont du type pré-alimentaire. Par contre vers le sud-est et l’est de la Mitidja très peu d’individus au vol sont signalés. Il faut rappeler que les deux dernières zones citées subissent une pression importante anthropique sous la forme d’un effort d’urbanisation intense. L’ambiance bruyante et les va-et-vient incessants des personnes et des véhicules font fuir les pigeons ramiers lesquels sont connus pour être farouches. Par ailleurs, ces oiseaux se posent rarement sur les terres agricoles ouvertes sauf s’il n’y a aucun dérangement du aux activités.
humaines.

4.2.4. – Discussions sur le cas de *Bubulcus ibis*

La discussion sur le héron garde-bœufs porte sur les variations des effectifs de sa population et sur les différents types de milieux fréquentés par cette espèce d’oiseau.

4.2.4.1. - Variations des effectifs du Héron garde-bœufs dans la Mitidja

Dans la région d’étude, les heures de regroupement des effectifs les plus importants du Héron garde-bœufs sont variables d’une saison à une autre. Entre 8 et 10 h le matin 75,8 % des effectifs sont notées au printemps. Durant l’après-midi, c’est entre 14 et 16 h que le maximum de la population de *Bubulcus ibis* est observée en automne, soit 76,5 %. Mais en hiver le plus fort taux est remarqué un peu plus tard, entre 16 et 18 h avec une abondance relative de 61,0 %. Durant cette même tranche de temps le maximum est noté en été avec 71,4 %. Il est à rappeler que SETBEL et *al.* (2005) remarquent qu’à l’approche du crépuscule plus de 90 % des effectifs de *Bubulcus ibis* rejoignent en grand nombre les dortoirs. Ces auteurs ont recensé 1083 individus en août et 4436 individus en octobre de l’année 2001. En effet, les hérons garde-bœufs se rassemblent soit pour la recherche d’une source d’alimentation, soit dans les dortoirs pour passer la nuit ou soit dans des sites de nidification. Ce comportement grégaire permet également à l’espèce de
bénéficiant d’une certaine protection par rapport à certains facteurs climatiques comme le vent et la pluie et face aux prédateurs. Dans la vallée de la Soummam en Petite Kabylie, SI BACHIR et al. (2000) rapportent que *Bubulcus ibis* préfère s’installer d’une part sur les arbres les plus hauts pour la recherche d’une protection contre les prédateurs terrestres et sont attirés d’autre part, par l’architecture des arbres supports qui offrent plus d’opportunités d’installation et de sécurité en hauteur. Ces auteurs ajoutent que la ramifications du brançage et la densité du feuillage à ce niveau offrent de bons abris.

4.2.4.2. - Milieux fréquentés par le Héron garde-bœufs dans la Mitidja

Fraxinus angustifolia, Cupressus macrocarpa et Araucaria sp. Il faut rappeler que des milliers de hérons viennent des environs de Meftah et de Cherarba soit pour passer la nuit sur les bosquets d'Eucalyptus de l'Oued El Harrach ou soit pour poursuivre leur vol vers d’autres dortoirs des jardins et différents parcs de la capitale. Cependant les jardins des centres-villes d’El Afroun, de la Chiffa et de Baraki constituent pour le Héron garde-boeufs de véritables lieux de refuge surtout la nuit. Il est à mentionner qu’au Brésil, les mouvements effectués par les hérons garde-boeufs sont généralement liés à la présence du bétail (DELLA BELLA et AZEVEDO-JUNIOR, 2004). Dans la région d’étude, les milieux semi-ouverts tels que les vergers et les maquis et les marécages sont fréquentés 3 mois sur 12 seulement. Les valeurs de leurs effectifs moyens les plus importants sont mentionnés en février avec 71 individus (47,4 %) pour les milieux semi-ouverts et en janvier avec 35,7 oiseaux (53,9 %) pour les marécages. Il faut rappeler qu’en Mitidja, de petites aires marécageuses apparaissent ça et là dès la mi-novembre et à la fin de mars qui attirent des dizaines et même des centaines de hérons garde-boeufs. Les mêmes remarques sont faites au Maroc par FRANCHIMONT (1986) qui précise que les mares temporaires sont éphémères et rares, mais qui persistent dans les garrigues de la mi-novembre à la fin avril. Cet auteur précise que ces mares sont plus nombreuses durant la seconde quinzaine de janvier correspondant à un taux égal à 4 % et pendant la première quinzaine de mars avec un taux de 6 %. Il est à noter que ces zones humides temporaires notées dans la région d’étude sont dues au mauvais drainage des terres de la plaine, aux constructions anarchiques, à l’urbanisation sauvage et à l’extension de la zone industrielle.

4.3. – Discussions globales sur l’écologie trophique de deux espèces d’oiseaux prédateurs

Les discussions qui concernent l’écologie alimentaire de deux espèces d’oiseaux prédateurs portent d’abord sur le comportement trophique de la Pie-grièche méridionale et sur la biologie de la reproduction chez ce Laniidae. Elles portent également sur la distribution et le comportement alimentaire de l’Elanion blac.

4.3.1. – Discussions sur le cas de Lanius meridionalis

Les discussions traitent du comportement trophique et de la biologie de la reproduction de L. meridionalis parallèlement à son alimentation dans les stations de Ramadhnia et de Baraki.

4.3.1.1. - Comportement trophique de L. meridionalis à Ramadhnia et à Baraki

Dans le cadre de ce paragraphe, les discussions concernent le comportement trophique
de la Pie-grièche méridionale à partir des analyses des régurgitats et sur ses proies stockées au niveau des laridaires.

4.3.1.1.1. – Discussion sur le régime alimentaire de la Pie-grièche méridionale à partir de l’analyse des régurgitats

Le total des espèces trouvées dans 102 régurgitats de la Pie-grièche méridionale est de 198 dont la richesse la plus élevée est notée à Ramadhania avec 146 espèces contre 124 espèces à Baraki. Par contre la richesse moyenne est plus forte à Baraki (s = 6,5) qu’à Ramadhania (s = 4,6). Il est à signaler que d’une manière générale, les travaux qui portent sur le régime alimentaire des pies-grièches ne citent pas les richesses de l’ensemble des espèces-proies, mais ils mentionnent le total des nombres de proies de toutes les espèces confondues (ARCAS, 1998; BUDDEN et WRIGHT, 2000; KARLSSON, 2002, 2007; LEPLEY et al., 2004; TRYJANOWSKI et HROMADA, 2004; PADILLA et al., 2005).

la Pie-grièche méridionale dans le Sud d’Israël des taux de 11,5 % pour les Hymenoptera et de 8,2 % pour les Orthoptera. Il faut rappeler que les espèces les mieux représentées dans le menu de la Pie-grièche méridionale le sont à Baraki comme Gryllus sp. (10,0 %). Pour ce qui est des Gryllidae, en Bulgarie NIKOLOV et al. (2004) ont remarqué chez Lanius excubitor la dominance de Gryllus campestris (47,2 %). Il est à noter que dans la partie occidentale de la Pologne, TRYJANOWSKI et HROMADA (2004) montrent que la Pie-grièche grise ingère chaque jour 25 Gryllus campestris pour satisfaire ses besoins énergétiques journaliers. Il faut rappeler que parmi les proies vertébrées consommées par la Pie-grièche méridionale trois espèces sont à souligner. Ce sont Discoglossus pictus qui est ingéré avec un taux égal à 0,6 % à Ramadhnia et autant soit 0,6 % à Baraki, une espèce indéterminée Lacertidae sp. qui est capturée à Baraki avec 0,6 % et Chalcides ocellatus plus faiblement capturée avec 0,4 %. En effet, nos résultats rejoignent ceux de PADILLA et al. (2005) qui remarque que les Lacertidae sont peu dévorés par la Pie-grièche méridionale dont il cite Tarentola delalandii (0,3 à 4 %). Il en est de même pour Lanius excubitor en Bulgarie qui ingère Lacerta agilis avec 0,5 % d’après NIKOLOV et al. (2004). Il faut rappeler que dans le présent travail, les Rodentia comme Mus spretus sont présents dans le menu de Lanius meridionalis mais avec un pourcentage égal à 0,5 % à Ramadhnia et à 0,4 % à Baraki. A l’instar de la Pi-grièche méridionale, il est à noter que dans la vallée de la Torio, dans le Nord-Ouest de l’Espagne, une autre espèce de Pie-grièche (Lanius collurio) préfère s’attaquer aux micromammifères comme Apodemus sylvaticus qui fréquentent les lisières de forêts et les zones ouvertes parsemées de buissons (HERNANDEZ, 1996). Il est à noter que dans plusieurs localités du Sud de la Finlande, la Pie-grièche grise s’attaque fortement aux petits rongeurs tels que Microtus voles (35,4 %), M. minutus (27,5 %), Sorex araneus (14,8 %) et Mus musculus (7,0 %) (KARLSSON, 2002). Il à signaler qu’en Tunisie, la Pie-grièche s’attaque aux jeunes oisillons de l’Elonion blac surtout au nid (OUNI, 2007). Il faut rappeler que dans le menu de Lanius meridionalis, l’espèce indéterminée Gryllidae sp avec des moyennes par pelote égales à 9,3 est considéré parmi les proies les plus importantes en effectifs. Dans les palmeraies d’Ouargla, ABABSA et al. (2005) précisent que l’espèce Gryllotalpa vulgaris est fortement ingérée par Lanius meridionalis elegans avec un nombre de 13 individus (12,5 %). Il faut rappeler que dans la station de Baraki, parmi les espèces-proies retenues comme importantes dans le menu du Laniidae, l’Orthoptera Lissoblemmus sp. domine avec une moyenne de 1,4 individu par pelote. Il est à souligner que dans les pelotes de Lanius meridionalis koenigi PADILLA et al. (2005), attirent l’attention sur la présence de Schistocerca gregaria parmi les Orthoptera. Ces auteurs précisent que cette espèce est consommée surtout en hiver avec 27 individus dans 116 pelotes analysées (moy. = 0,2). Par contre, en Bulgarie, chez une autre espèce de Pie-grièche (Lanius collurio), les Orthoptera constituent l’essentiel de son alimentation avec une consommation de 1,2 proie par pelote (NIKOLOV, 2002). Il faut rappeler qu’à Ramadhnia, la présence des espèces-proies en fonction des mois est représentée par Macrothorax morbillosus. Ce Carabidaeest très ingéré surtout en janvier et en septembre avec une moyenne de 2 proies par pelote durant chacun des deux mois.

Les tailles des proies consommées par Lanius meridionalis, dans les deux stations d’étude mesurent entre 1 et 150 mm de long. Il est noter qu’en Slovaquie, HNOMADA et KRIŠTIN (1996) trouvent que la taille totale des proies ingérées par la Pie-grièche grise
est comprise entre 3 mm et 120 mm de long. Il est à mentionner qu’à Ramadhnia, *Lanius meridionalis* s’attaque surtout aux proies de la classe de tailles de 17 mm correspondant à une abondance relative égale à 14,2 %. Parmi les espèces-proies appartenant à cette classe de tailles il est à noter l’espèce indéterminée Gryllidae sp. ind., *Silpha granulata*, *Rhizotrogus* sp. et *Geotrupes* sp. Il faut rappeler que dans la station de Baraki, les proies de 17 mm sont les fréquentes avec une abondance relative égale à 14,0 %. Il faut ajouter que ce sont surtout les espèces comme *Odontura algerica*, *Gryllus* sp., *Lissoblemmus* sp. et *Pentodon* sp. qui font partie de cette classe de tailles. Il faut noter que la Pie- grièche méridionale s’attaque aux proies de plus grandes tailles mesurant entre 55 et 70 mm telles que *Mus spretus* et *Phylloscopus* sp. (Ramadhnia ; A.R. = 1,8 %) et *Tarentola mauretanica* (Baraki ; A.R. = 0,8 %). Il est mentionné que dans le Sud-est de l’Espagne, HODAR (2006) remarque que les proies de tailles égales ou inférieures à 13 mm sont peu consommées par la Pie-grièche méridionale. Cet auteur note que parmi les proies les plus communes dans le régime du Laniidae, il y a des espèces de lézards telles que *Psammobromus algirus*, *Psammobromus hispanicus* et *Acanthodactylus erythraeus*. Il faut rappeler que dans l’Ouest du Paléarctique SNOW et al. (1998) attirent l’attention sur le fait que l’alimentation de la Pie-grièche méridionale est composée par des reptiles en proportions élevées. Il est à souligner que dans le présent travail, il n’y a pas de corrélation entre le nombre de proies, pelote par pelote et la taille maximale de la proie ingérée (P ≥ 0,05). Il faut rappeler que *Lanius meridionalis* s’attaque soit aux proies de taille moyenne (17 mm), soit aux proies de petites tailles (9 à 10 mm) ou soit d’une manière préférentielle à de plus grosses proies (60 à 150 mm) lorsqu’elles sont présentes. Les valeurs des indices de diversité de Shannon-Weaver à Ramadhnia sont relativement élevées. En effet, parmi elles 57,1 % sont supérieures ou égales à 3 bits. A Baraki seulement 30 % des valeurs de H’ sont supérieures à 3 bits. Nos résultats sont largement supérieurs de ceux obtenus par KARLSSON (2002) dans le Sud de la Finlande qui note que des valeurs de H’ comprises entre 1,16 et 1,27 bits. Pour ce qui est des valeurs de l’indice d’équirépartition obtenus dans le présent travail, elles tendent dans l’ensemble vers 1 ce qui implique un comportement prédateur généraliste. Par ailleurs, dans le Sud de l’Espagne HODAR (2006), signale que la Pie-grièche méridionale présente un comportement plutôt opportuniste et se nourrit de ce qu’elle trouve à ce moment-là. Pour ce qui concerne la fragmentation des proies, un indice est employé pour les principaux groupes d’espèces ingérées par *Lanius meridionalis* comme les Coleoptera. L’indice ou taux de fragmentation montre que les éléments les plus brisés de toutes les espèces confondues sont les ensembles des sternites et des tergites abdominaux (P.F. = 97,3 %), les élytres (P.F. = 89,8 %) et les thorax (P.F. = 89,5 %). Pour ce qui concerne les Hyménoptéra les taux de fragmentation atteignent 100 % pour les élytres et ailes et les ensembles des sternites et des tergites abdominaux. Pour les Orthoptera, quatre parties des corps sont totalement désagrégées, soit les têtes, les thorax, les ailes et les tibias. Il est à noter qu’en Europe, la majorité des auteurs dans leurs études sur le régime alimentaire des pies-grièches méridionales n’ont pas appliqué l’indice de fragmentation (BUDDEN et WRIGHT, 2000; LEPLEY et al., 2004; PADILLA et al., 2005). Par contre en Algérie, seuls TAIBI et al. (2007) ont étudié pour les proies de *Lanius meridionalis* le taux de fragmentation des éléments sclérétinisés trouvés dans les pelotes. Ces auteurs trouvent que les Orthoptera présentent un pourcentage de fragmentation (PF %) égal à 81
% dont les Gryllidae occupent le premier rang (P.F. % = 86,1 %). Les Hymenoptera (P.F.
% = 38,0 %) sont représentés par Bombus sp. (P.F. % = 62,3 %) et les Coleoptera (P.F.
% = 37,1 %) par Ocypus olens (P.F. % = 59,3 %). Il est à signaler que l’indice de
fragmentation a été employé pour les proies de certains oiseaux prédateurs diurnes et
nocturnes (SEKOUR et al., 2003; BENDJABELLAH et al. 2004; SEKOUR et al., 2005). Il
est à mentionner qu’à Mergueb, SEKOUR et al. (2005) ont remarqué dans le régime
alimentaire d’Athene noctua que le taux de fragmentation des Coleoptera est égal à 36,9
% par rapport à l’ensemble des pièces sclérotinisées. Cet ordre d’après les mêmes
auteurs est représenté surtout par le Scarabeidae Rhizotrogus sp. (P.F. = 47,8 %).

Dans la présente étude, l’analyse de la variance est appliquée aux principales
espèces-proies de Lanius meridionalis dans le but d’une recherche d’une éventuelle
différence significative entre ces espèces-proies. Les résultats révèlent qu’il existe une
différence significative entre les nombres des espèces-proies trouvées dans les
réurgitats du Laniia ade à Ramadnia et à Baraki. Plusieurs auteurs qui se sont penchés
sur le régime trophique des pies-grèches méridionales n’ont traité les espèces-proies par
une analyse de la variance (ARCAS, 1998; BUDDEN et WRIGHT, 2000; KARLSSON,
2002, 2007; LEPLEY et al., 2004; TRYJANOWSKI et HROMADA, 2004; PADILLA et al.,
2005).

4.3.1.1.2. - Proies stockées au niveau des lardoires

Entre la période allant de mars à mai et d’août à octobre, 8 espèces-proies (S = 8) pour
un effectif de 15 individus sont signalées dans les lardoires de Lanius meridionalis. La
majorité des proies sont fixées sur du fil barbelé comme à Ramadnia et sur des petits
rameaux d’Olea europaea à Baraki. En Bulgarie, NIKOLOV et al. (2004) trouvent un total
de 104 dépouilles empaillées sur du fil barbelé et sur diverses plantes telles que Prunus
cerasifera, Salix sp., Crataegus monogyna et Rosa sp. Il est à souligner qu’à Ramadnia,
l’espèce indéterminée de Chilopoda domine au niveau des lardoires avec une abondance
relative égale à 33,3 %. Également trois espèces sont notées en 2 exemplaires chacune
dont le Bourdon (Bombus sp.). En Bulgarie, NIKOLOV et al. (2004) notent la forte
abondance dans le lardoire de la Pie-grèche grise de l’espèce Gryllus campestris avec un
taux de 91.3 %. Il faut rappeler que dans la présente étude, les proies accrochées au
niveau des lardoires sont relativement grandes par rapport à celles trouvées dans les
régurgitats, comme c’est le cas des vertébrés Mus spretus (70 mm) et Chalcides ocellatus
(170 mm) notés à Ramadnia. En Bulgarie, NIKOLOV et al. (2004) remarquent que la
Pie-grèche grise, place dans le lardoire des lézards comme Lacerta agilis et des rongeurs
tel que Microtus arvalis. Il faut rappeler que Lanius meridionalis fixe ses proies le plus
souvent près des coins de la clôture du grillage qui entoure la station. Les résultats de la
présente étude confirment ceux obtenus en Pologne occidentale par ANTCZAK et al.
(2004) qui remarquent que les proies empalées par Lanius excubitor sont placées dans
les bordures territoriales et que la majorité de ces proies n’ont pas été consommées. Ces
auteurs ajoutent que cette pie-grèche stocke ses proies en les empalant en vue de leur
consummation pendant la période de reproduction.
4.3.1.2. – Discussion sur biologie de la reproduction de *Lanius meridionalis*

La reproduction de la Pie-grièche méridionale est suivie à Baraki, puisque plusieurs nids sont retrouvés aux alentours de cette localité. Dans la même station, la densité de *Lanius meridionalis* est estimée en 2007 à 4,3 couples sur 10 ha. Il est à mentionner que dans la région de l’Akkadou près de Sidi Aïch, la densité de la Pie-grièche méridionale est relativement faible d’après DOUMANDJI et MERRAR (1993) qui notent entre 1 c. (friche) et 1,5 c. (maquis) par hectare. Par contre nos résultats se rapprochent de ceux mentionnés par GUEZOL et al. (2006a) qui ont calculé dans les palmeraies d’Ouargla, une valeur de 5 c. sur 10 ha. Par contre dans le maquis du parc de Ben Aknoun, la densité de *Lanius meridionalis* signalée par REMINI (2007) atteint 6,3 c. par 10 ha. La première nidification de la Pie-grièche méridionale est notée à Baraki à la fin d’avril 2006 dont 7 nids sont signalés contre 11 en 2007. La majorité des nids sont retrouvés dans la station de Baraki au nombre de 5 (2006) et de 9 (2007). Il faut rappeler qu’en Algérie, aucune étude n’a été faite sur la biologie de la reproduction de *Lanius meridionalis*. Par contre, quelques données sur la reproduction d’une autre espèce de Laniidæ (*Lanius senator*) sont publiées par MOALI et al. (1997). Il est à rappeler que dans la partie occidentale de la Pologne, une importante population de la Pie-grièche grise a été étudiée par ANTCZAK et al. (2004) dans deux grandes parcelles de 220 et de 176 km². Ces auteurs ont localisé 114 nids installés (63,3%) dans des conifères et 66 nids (36,7 %) dans des arbres à feuilles caduques. Ces mêmes auteurs remarquent que les paramètres reproducteurs de *Lanius excubitor* sont plus importants par rapport de ceux des populations européennes. Il est à noter que les pies-grèches grises de l’Europe méditerranéenne et de l’Afrique du Nord sont distinctes de celles des Pies-grèches grises *Lanius excubitor* du restant de l’Europe (ISENMANN et al. (2005). Ces mêmes auteurs pensent que des études devraient préciser ultérieurement les relations phylogénétiques entre les populations ibéro-françaises et celles d’Afrique du Nord. Il est à souligner que dans la station de Baraki, presque tous les nids trouvés sont construits sur *Olea europaea*. D’une manière générale, les nids élaborés par la Pie-grièche méridionale sur les oliviers sont en forme de coupe. Ces derniers sont placés sur des ramifications latérales. Par contre les nids trouvés encastrés dans des trous creusés dans le tronc qui sont généralement édifiés sur des arbres d’alignement comme *Casuarina torulosa*. Il est à mentionner que chez *Lanius senator*, MOALI et al. (1997) trouvent que la majorité des nids recensés sont situés sur des oléastres et des oliviers. Par ailleurs en France, précisément en Crau sèche LEPLEY et al. (2000), note que la Pie-grièche méridionale utilise comme support de nidification des chênes verts (*Quercus ilex*), des ronces (*Rubus sp.*) et des filaires étroites *Phyllyrea angustifolia*. Il faut rappeler que dans la région d’étude, les hauteurs des nids varient entre 5,5 et 10,5 cm (8,6 ± 1,5 cm). Dans le Sud-Ouest de la péninsule ibérique, les hauteurs sont plus importantes d’après DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) comprises entre 9,6 et 17,0 cm (12,5 ± 1,8 cm). Dans la station de Baraki, les hauteurs des emplacements des nids par rapport au niveau du sol sont comprises entre 1,7 et 5,4 m (2,5 ± 1,15 m). En France, YEATMAN-BERTHELOT et JARRY (1994) notent que *Lanius meridionalis* place son nid à une hauteur moyenne de 1 m au dessus du sol dans des ronces et des filaires. Dans le
mêmes pays en Crau sèche, LEPLEY et al. (2000) précisent que les hauteurs des nids de *Lanius meridionalis* sont comprises entre 1,0 et 3,0 m avec des moyennes variant entre 1,7 et 2,2 m. Il faut rappeler que dans la région d’étude, la Pie-grèche méridionale n’a pas de préférence dans le choix de la hauteur du support végétal puisqu’il y a de grandes différences entre les hauteurs des arbres utilisés. Il faut rappeler qu’à Baraki ce Laniidae installe ses nids à des hauteurs assez basses par rapport au sol (1,1 m) ce qui confirme les dires de LEPLEY et al. (2000).Dans la région d’étude, les tailles de ponte de *Lanius meridionalis* se situent entre 1 et 6 œufs (moy. = 4,3 ± 1,34 œufs). Nos résultats se rapprochent de ceux obtenus par DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) qui notent que le nombre est compris entre 2 et 6. Par contre LEPLEY et al. (2000) trouve une valeur moyenne relativement plus élevée avec des tailles de pontes entre 3 et 7 œufs par nid (moy. = 5,18 œufs). Dans l’Ouest de la Pologne, la taille de ponte moyenne chez *Lanius excubitor* est estimée par ANTCZAK et al. (2004) à 6,6 œufs. Concernant les poids des œufs par nid obtenus près de Baraki ils sont compris entre 4,2 et 5,6 grammes avec des valeurs moyennes des poids des œufs par nid comprises entre 4,7 ± 0,13 et 5,5 ± 0,04 g. Il est à noter que DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) donnent les poids notés après les pesées de 124 œufs de *Lanius meridionalis* dans la péninsule ibérique ? Ceux-ci fluctuent entre 4,2 et 5,8g. (4,9 ± 0,34 g.). Il faut rappeler qu’à Baraki, les valeurs des longueurs des grands axes des œufs de *Lanius meridionalis*, se situent entre 2 et 2,7 cm. Elles sont du même ordre de grandeur que celles mentionnées par DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) comprises entre 2,1 et 3,0 cm, dans les plaines du bassin du Guadiiana en Espagne. Chez la Pie-grèche écorcheur, les tailles des grands diamètres des œufs estimées par LEFRANC (2004) fluctuent entre 2 et 2,7 cm (2,5 ± 0,14 cm). Il faut rappeler que dans la région d’étude, la durée de couvaison chez la Pie-grèche méridionale se situe entre 13 et 14 jours ce qui diffère des résultats de DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) qui précisent que la durée de la couvaison en Espagne, calculée à partir de la ponte du quatrième œuf, est en moyenne de 18,7 jours. Cependant, chez la Pie-grèche à poitrine rose, ISENNANN et al. (2000) ont trouvé que la couvaison dure 16 jours. Il faut rappeler que lors du nourrissage des oisillons, les parents restent au nid à tour de rôle. Si le nid est dérangé le mâle ou la femelle adulte s’éloigne peu de ses petits et manifeste son inquiétude par des cris d’alarme répétés. Les taux des éclosions de l’ensemble des œufs de la Pie-grèche méridionale sont de 92,9 % en 2006 et de 52,6 % en 2007. Dans l’Ouest de la péninsule ibérique, DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) mentionnent que les taux des éclosions sont compris entre 40 % pour la deuxième couvée et 74, 5 % pour la première couvée. En France, en Crau sèche LEPLEY et al. (2000) ont trouvé sur un total de 137 œufs pondus, 54 % d’éclos. Il faut rappeler que dans la région d’étude, un jeune oisillon après sa naissance pèse entre 7 et 8,9 grammes. Nos résultats sont plus élevés que ceux notés par DE LA CRUZ SOLIS et DE LOPE REBOLLO (1985) dans les plaines du bassin du Guadiana (Espagne). En effet ces auteurs constatent qu’à la naissance les poids des poussins varient entre 4,1 à 5,8 g (moy. = 4,8 g.). Pour ce qui concerne les pourcentages des envois obtenus dans la station de Baraki, ils sont compris entre 75 % (2007) et 100 % (2006) par rapport au pourcentage des éclosions. A Montpellier, chez *Lanius minor* le taux de l’envol est de 85 % (ISENNANN et al. 2000). Il est à mentionner que dans le présent travail, au stade poussin, le taux de mortalité signalé est de 25 % en

4.3.2. – Discussions sur le cas d’*Elanus caeruleus*

Les discussions concernent en premier lieu la distribution d’*Elanus caeruleus* et sa place au sein des rapaces diurnes remarqués en Mitidja et en second lieu son comportement trophique.

4.3.2.1. - Distribution d’*Elanus caeruleus* en Mitidja et sa place au sein des rapaces diurnes vivant dans la région d’étude

4.3.2.2. - Comportement trophique d’*Elanus caeruleus*

Les pelotes de rejection de l’Elanion blac récoltées à Haouch Makhfi mesurent entre 14 et 37 mm de long (moy. = 22,93 ± 4,9) et entre 12 et 22 mm de large (moy. = 16,96 ± 2,7). Il est à mentionner qu’au Maroc, BERGER (1987) trouve des valeurs plus importantes puisque les longueurs de la pelote sont comprises entre 19 et 48 mm (moy. = 29 mm) et les diamètres varient entre 13 et 31 mm (moy. = 19 mm). Il est à noter que le nombre moyen de proies par pelote est de 2,1 ± 1,3. Au Maroc, BERGER (1987) trouve que le nombre moyen de proies par pelote chez cette espèce est égal à 1,75. Dans la station de Meftah, le menu d’*Elanus caeruleus* se compose de 6 espèces-proies dont *Mus spretus* fortement ingérée avec une abondance relative égale à 71,4 %. Cependant *Crocidura russula* vient au second rang, faiblement consommée (A.R. = 17,5 %). Il est à mentionner que dans la région du Cap en Afrique du Sud, SIEGFRIED (1965) trouve que le régime alimentaire de l’Elanion blac est formé de mammifères (84 %) et de reptiles (11 %). Cet auteur ajoute que les insectes (4 %) sont faiblement ingérés. A Johannesburg, TARBOTON (1978) montre que la quasi-totalité des proies du rapace sont des mammifères (99 %). Ainsi la proportion des mammifères ingérés par l’Elanion blac fluctue d’une région à une autre. Il faut rappeler qu’à Haouch Makhfi, la biomasse des proies d’*Elanus caeruleus* est fortement représentée par *Mus spretus* (64,5 %) Cependant *Rattus norvegicus* se place en seconde position avec une biomasse de 22,8 %. Au Maroc, BERGER (1987) trouve que les mammifères et les oiseaux forment la quasi-totalité de la biomasse consommée correspondant respectivement à 42 % et à 57 %. Cet auteur note que les micro-mammifères sont représentés par *Lemniscomys barbarus* (17,3 %) et *Mus musculus* (12,4 %). Il est à remarquer que la diversité des proies de l’Elanion blac obtenus dans la présente étude est faible (1,3 bits). Probablement, elle serait plus élevée si le nombre de pelotes analysées était relativement plus important. Dans la littérature aucune étude ne traite de la diversité des proies d’*Elanus caeruleus*. Mais BERGER (1987) montre que la richesse alimentaire de cette espèce à partir d’un grand nombre de régurgitats analysés est élevée. Cet auteur mentionne dans 112 pelotes de rejection 14 espèces d’oiseaux, 8 espèces de micro-mammifères, 7 espèces d’insectes et une espèce de lézard.

conditions de lumière très faible, au crépuscule. Mais ces auteurs ajoutent que le rapace apporte des proies aux jeunes oisillons le matin (8 h 10’), au milieu de la journée (12 h 15’) et en fin d’après midi (21 h 30’). En Aquitaine, ce comportement de chasse en pleine journée est observé chez le mâle d’*Elanus caeruleus* par DUCHATEAU et *al.* (2003). Cet auteur ajoute que le territoire de chasse à *Elanus caeruleus* est formé de milieux ouverts qui lui permet de repérer ses proies au crépuscule.
Conclusion générale

Dans la plaine de la Mitidja, le peuplement avien entre 2004 et 2006 est composé de 125 espèces dont 48 % sont sédentaires et dont la majorité appartient au type faunique Paléarctique (25,6 %). Les types Européen (13,6 %) et Européo-Turkestanien (12,8 %) sont bien représentés. Parmi les cinq catégories faunistiques obtenues, la catégorie méditerranéenne apparaît la plus importante (28,8 %) suivie par et les catégories paléarctique (25,6 %) et paléo-montagnarde ou boréale (25,6 %). Les valeurs moyennes des contacts par espèce et par station se situent entre 0,03 (Bourkika) et 17,1 (Rouiba). Les valeurs des richesses totales sont élevées dans les stations occidentales de la Mitidja avec 43 espèces (Blida) et 39 espèces (Bourkika). Par ailleurs, les richesses moyennes se situent entre 2,1 (Birtouta) et 7,7 (Boufarik). Les coefficients d’homogénéité sont faibles dans l’ensemble des stations d’échantillonnage ce qui implique une hétérogénéité du peuplement avien de la Mitidja. Les valeurs de la diversité sont élevées ainsi que celles de l’équirépartition qui montre que les effectifs des espèces avies ont tendance à être en équilibre entre eux. Pour les fréquences centésimales des principales espèces avies, celles qui sont les plus fréquentes dans les stations proches de l’Atlas tellien sont Alectoris barbara (9,3 %) et Merops apiaster (17,3 %). Dans les stations du centre, il faut noter Lanius meridionalis (3,0 %), Muscicapa striata (3,1 %), Columba palumbus (14,5 %), Streptopelia turtur (42,7 %) et Psittacula krameri (F= 48,2 %). Par ailleurs les espèces les plus fréquentes dans presque toute les stations d’étude sont Carduelis chloris (1,2 %), Sylvia atricapilla (5,4 %), Parus caeruleus (5,4 %), Fringilla coelebs (6,3 %), Pycnonotus barbatus (8,6 %), Turdus merula (13,2 %) et Serinus serinus (23 %). Certaines Passereaux ont envahi toute la région d’étude avec Passer domesticus x P.
hispaniolensis (26,6 %). Il existe une certaine ressemblance du peuplement avien entre Rouiba et Boufark dont la valeur du coefficient de similarité enregistré est de 65,3 %, soit 16 espèces communes. Par ailleurs par rapport à la station occidentale, le coefficient de similarité est de 57,1 % entre Bourkika et Boufark. L’analyse factorielle des correspondances qualitative montre que les espèces omniprésentes sont Turdus merula et Passer domesticus x P. hispaniolensis. Cependant 3 espèces sont presque omniprésentes dans les différentes stations de la région d’étude hormis dans une seule. Ce sont Parus caeruleus absente à Meflah, Serinus serinus non observée à Blida et Carduelis chloris non contactée à Chebli. L’analyse factorielle des correspondances quantitative, a permis de rassembler les espèces en 7 nuages de points dont chacun d’eux se situe tout autour d’une station. Celles parmi elles qui se rapprochent le plus de la station présentent des effectifs les plus importants. Par contre, les espèces les plus éloignées sont rares ou numériquement faibles. Pour les espèces d’oiseaux introduits ou en pleine expansion, la Perruche Psittacula krameriise reproduit dans l’Algérois et s’accroît en effectifs. Elle manifeste sa présence entre 1996 et 2007 dans l’Algérois (1996), dans la plaine de la Mitidja (1997), à Tizi ouzou (2001), à Mila (2002), à Biskra (2004), à Médéa (2005) et à Annaba (2007). L’évolution numérique des effectifs de la Perruche à collier est remarquée entre 1996 et 2002 dont ses effectifs augmentent assez légèrement avec 10,9 % par rapport à la population recensée en 2006. Cependant en 2003 le nombre est estimé à 283 individus soit un taux de 67,1 % par rapport au total des effectifs cumulés en 2006, soit 422 individus. Les taux des contacts-unités calculés en 2006 sont de 76,2 % par rapport à l’ensemble des contacts eus depuis 1990 jusqu’en 2006. Sur les 7 tranches horaires qui correspondent à 2 heures chacune, Psittacula krameri est active surtout entre 6 et 8 h (36,3 %) et entre 16 et 18 h (24,7 %). En mars les effectifs notés sont plus importants, surtout le matin entre 6 h et 9 h. Ce fait est montré par la relation entre le nombre d’individus observé par jour et par heure et la valeur maximale des contacts avec la Perruche à collier (P = 0,0093). Le régime alimentaire du Psittacidae est phytopage (H' = 5,1 bits) composé de fragments de 44 espèces végétales différentes. Les fruits de 19 espèces (S =19) sont consommés fortement avec une dominante en mars, en mai et en décembre (100 %). Les fleurs (S = 8) sont ingérées pendant trois périodes (janvier-février, juin-juillet et septembre-novembre). Les graines sont consommées en avril (S = 1) et en août-novembre (S = 5) avec une forte proportion en août (37,5 %) par rapport aux autres catégories de fragments végétaux. La richesse alimentaire de la Perruche à collier est la plus grande en été (16 espèces) et à peine plus basse de décembre à février (15 espèces). Mentionnée la première fois en 2000, la Tourterelle turque est recensé en 2001 avec 2,3 couples/ 10 ha. Sa densité s’élève vite, atteignant 31,2 c./10 ha en 2006. Elle colonise davantage le Nord et l’Est par rapport au reste de la plaine de la Mitidja, comme Oued Smar (F = 11,6 %) et Cherarba (4,8 %). Il semble que la Tourterelle turque préfère les milieux suburbains, se nourrit et se reproduit à proximité des habitations. La présence du Pigeon ramier dans la plaine est mise en évidence en 1992 avec 1 c./10 ha. Sa densité a progressé depuis et se situe en 2006 à 57,3 couples. Les déplacements trophiques des effectifs de C. palumbus sont importants en mars (322 individus) enregistrés surtout entre 7 et 8 h (62,4 %). Par ailleurs, la palombe se déplace suivant 3 directions (sud, sud-ouest et sud-est). En mars 68,0 % des effectifs du Pigeon ramier s'envolent depuis Baraki vers le Sud contre 24,8 % vers le sud-ouest. Mais, la
tendance à se déplacer davantage vers le sud-ouest devient dominante en mai (62,5 %). Dans la plaine de la Mitidja, les effectifs moyens du Héron garde-bœufs sont fortes en mars (271 ± 95,46 ind.), en août (125 ± 35,36 ind.) et en décembre (108,1 ± 78,49 individus). Les heures de regroupement des effectifs de *Bubulcus ibis* sont importants entre 8 et 10 h au printemps (A.R. = 75,8 %), entre 14 et 16 h en automne (76,5 %) et entre 16 h et 18 h en hiver (61,0 %) et en été (71,4 %). Le Héron garde-bœufs fréquente en premier lieu les terres ouvertes labourées durant 8 mois sur 12 par rapport aux autres types de milieux. Dans les régurgitats de la Pie-grèche méridionale, 198 espèce-proies sont mentionnées avec une dominance des Coleoptera (46,0 %). Mais parmi les espèces, c'est *Gryllus* sp. qui est le mieux représentée (10,0 %). Les petits vertébrés sont consommés par le Laniidae comme *Discoglossus pictus* (0,6 %), *Mus spretus*(0,5 %) et *Chalcides ocellatus* (0,4 %). Cependant, la Pie-grèche ingère surtout des proies de tailles de 17 mm (14,2 %), ainsi que des plus grandes tailles (55 et 70 mm). La corrélation entre le nombre de proies, pelote par pelote et la taille maximale de la proie ingérée est non significative (P ≥ 0,05). Les valeurs de H* des proies à Ramadhania sont relativement élevées. Parallèlement E tend vers 1 ce qui implique un comportement prédateur généraliste. L’analyse de la variance appliquée aux principales espèce-proies trouvées dans les régurgitats de la Pie-grèche méridionale à Ramadhnia et à Baraki met en évidence une différence significative entre ces espèces-proies. A Baraki, 7 nids de *Lanius meridionalis* sont signalés en 2006 contre 11 en 2007. Les tailles de ponte se situent entre 1 et 6 œufs (moy. = 4,3 ± 1,34 œufs). Les poids moyens d’un œuf par nid sont comprises entre 4,7 ± 0,13 et 5,5 ± 0,04 g. La couvaison dure 13 à 14 jours, ainsi que la durée de l’élevage (16 à 17 jours). Les taux des éclosions de l’ensemble des œufs de *Lanius meridionalis* sont de 92,9 % (2006) et de 52,6 % (2007). L’Elanion blac consomme fortement *Mus spretus* avec une biomasse égale à 64,5 %. Les effectifs des espèces-proies du rapace ont tendance à être en équilibre entre eux. *Elanus caeruleus* localise sa victime au vol stationnaire surtout au crépuscule avant de fondre brusquement sur elle.

Perspectives

Les études sur le peuplement avien dans la Mitidja restent restreintes. Il serait nécessaire de développer un certain nombre d’aspects comme la mise en place des points de surveillance dans le cadre de programmes d’inventaires et de suivis des oiseaux. Le contrôle régulier des espèces migratrices, ainsi que de passage par des échantillonnages par points d’écoute mérite d’être pris en considération. Le suivi des espèces extensives comme les tourterelles et le Pigeon ramier et exotique comme la Perruche à collier en Mitidja en particulier et en Algérie d’une manière générale apparaît indispensable. Une meilleure connaissance des causes de leurs progressions permettrait de mieux cerner les risques qu’elles feraient peser sur l’environnement. Le comportement trophique et la biologie de la reproduction de l’Elanion blac et de la Pie-grèche méridionale restent à développer. Par ailleurs, il est intéressant de voir le partage des ressources alimentaires par ces deux prédateurs dans le même territoire de chasse. Enfin, les relations phylogénétiques sur les sous-espèces de *Lanius meridionalis* méritent d’être étudiées afin de préciser le statut et la distribution de chaque sous-espèce en Algérie.
Référence bibliographique

AIT BELKACEM A., LAKROUF F., DOUMANDJI S. et BAZIZ B., 2004 – Troisième note sur les différentes catégories d’hybrides chez le Moineau *Passer Brisson*, 1750 (Aves, Ploceidae) dans le Plateau de Belfort, à l’institut national de la recherche

BENDJOUDI D. et DOUMANDJI S., 1997b – Intérêt de quelques passereaux en

BOUKHEMZA M., BOUKHEMZA-ZEMMOURI N. et VOISIN J.F., 2006 – Biologie et

CAMARERO G. R. et HIDALGO de TRUCIOS S. J., 2001- La Tourterelle turque en...

Etude de l’Avifaune de la Mitidja

GEBHARDT H., 1996 - Ecological and economic consequences of introductions of exotic wildlife (birds and mammals) in Germany. Wildlife Biology, 2 (3) : 205 - 211.

HADDAB H. et ABIB F., 1995 - Cartographie des sols de la ferme expérimentale de

ISENMANN P., DEBOUT G. et LEPLEY M., 2000 – La Pie-grièche à poitrine rose
Lanius minor nicheuse à Montpellier (Sud France). _Alauda_, 68 (2) : 123 – 131

ISENMANN P., GAULTIER Th., EL HILI A., AZAFZAF H., DLENSI H. et SMART M.,

JACOB J.-P., 1979 – Résultats d’un recensement hivernal de Laridés en Algérie. _Le

JACOB J.-P., 1983 – Oiseaux de mer de la côte centrale de lac de Boughzoul (Algérie).
Alauda, 51 (1) : 48 - 63.

JACOBS P., MALHER F. et OCHANDO B., 1978 – A propos de la couleur de la calotte
chez la Sittelle kabyle (_Sitta ledanti_). _Aves_, 15 : 149 - 153.

JOHNSTON R. F., 1969 – Taxonomy of house sparrows and their allies in the

communs nicheurs en France selon 15 ans de programme Stoc. _Alauda_, 73 (4) : 345
– 356.

KADID S., 1989 – Etude phytosociologique de quelques groupements de “mauvaises
herbes” dans la région de Ksar El Boukhari (piémont sud de l’atlas blidéen). Thèse
Ing., Inst. nati. agro., El Harrach 52 p.

KARLSSON S., 2002 – Analyses on prey composition of overwintering Great Grey
Shrikes _Lanius excubitor_ in southern Finland. _Ornis Fennica_, 79 : 181 - 189.

KARLSSON S., 2007 – Food consumption and roosting behaviour of Great Grey
Shrikes _Lanius excubitor_ wintering in south western Finland. _Ornis Fennica_, 84 (2) :
57 - 65.

KENOUCH M., ALLOUCHE D. et SI BACHIR A.,2000 – Biologie de la reproduction du
Héron garde-bœufs _Bubulcus ibis_ dans la région de Béjaïa et évolution de la
population nicheuse. 5 ème _Journée d’Ornithologie_,18avril 2000, _Dép. Zool. agri. for.,
Inst. nati. agro., El Harrach_, p. 5.

KERAUTRET L., 1969 – Observations ornithologiques dans le Nord de la Grande

KIARED S., 1985 – Approche phytosociologique de quelques groupements messicoles
des grandes cultures dans la plaine de la Mitidja. Thèse Ing., Inst. nati. agro., El
Harrach, 54 p.

KREBS E.A., RIVEN-RAMSEY D. and HUNTE W., 1994 - The Colonization of
Barbados by Cattle Egrets (_Bubulcus ibis_) 1956-1990. _Colonial Waterbirds_, 17 (1) : 86
- 90.

LAIOLO P., ROLANDO A. and VALSANIA V., 2004 – Avian community structure in

MULLER Y., 1996 – Dénombrement de l’avifaune nicheuse de la forêt du Romersberg...

PADILLA D.P., NOGALES M. and PEREZ A.J., 2005 – Seasonal diet of an insular endemic population of Southern Grey Shrike Lanius meridionalis koenigi on Tenerife,

PETRY M.V. and DA SILVA FONSECA V.S., 2005 - Breeding success of the colonist species *Bubulcus ibis* (Linnaeus, 1758) and four native species. *Acta Zoologica*, 86 (3) : 217 – 221

PITHON J.A. and DYTHAM C., 2002 - Distribution and population development of introduced Ring-necked Parakeets *Psittacula krameri* in Britain between 1983 and 1998 : Of the three subpopulations, only the one west of London was increasing, with little spread. *Bird Study*, 49 (2) : 110 - 117.

SI BACHIR A., HAFNER H., TOURENQ J.-N. et DOUMANDJI S., 2000 - Structure de

VANSTEENWEGEN C., 1997 - Variations géographiques du caractère sédentaire des populations françaises d’espèces partiellement migratrices : Une analyse des reprises d’oiseaux bâgués. II. Motacillidés, Trogloodyte, Cincle et Accenteur mouchet. *Alauda*, 65 (1) : 19 - 28

Autres références

Annexe n° 1 : Flore de la Mitidja

<table>
<thead>
<tr>
<th>Family</th>
<th>Species Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthaceae</td>
<td>Cirsium arvense L.</td>
</tr>
<tr>
<td>Amaranthus aspersa L.</td>
<td>Crepis vesicaria L.</td>
</tr>
<tr>
<td>A. albus L.*</td>
<td>Cynara scolymus L.</td>
</tr>
<tr>
<td>A. angustifolius Lamk. *</td>
<td>Erigeron bonariensis L.</td>
</tr>
<tr>
<td>A. hybridus L.*</td>
<td>Galactites tomentosa (L.)*</td>
</tr>
<tr>
<td>A. paniculatus (L.)</td>
<td>Lactuca scariola L.</td>
</tr>
<tr>
<td>Ampelidaceae</td>
<td>Leontodon tuberosus L.</td>
</tr>
<tr>
<td>Vitis vinifera L. *</td>
<td>Ormenis praecox (Link.)</td>
</tr>
<tr>
<td>Araceae</td>
<td>Pieris duriae Sch.</td>
</tr>
<tr>
<td>Arisarum vulgare Targ. Tozz.</td>
<td>P. echioides L.</td>
</tr>
<tr>
<td>Arum italicum Mill.</td>
<td>Reichardia picroides (L.)</td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>Scolymus hispanicus L.*</td>
</tr>
<tr>
<td>Borago officinalis L.*</td>
<td>S. maculatus L.*</td>
</tr>
<tr>
<td>Echium plantagineum L.</td>
<td>Senecio vulgaris L.</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>Silybum marianum (L.)</td>
</tr>
<tr>
<td>Cerastium glomeratum Thuill.</td>
<td>Sonchus asper (L.) *</td>
</tr>
<tr>
<td>Silene fuscata Link.*</td>
<td>S. oleraceus L.</td>
</tr>
<tr>
<td>S. gallica L.*</td>
<td>Xanthium cavanillesii Schouw.</td>
</tr>
<tr>
<td>S. inflata (Salsib.) *</td>
<td>Convolvulaceae</td>
</tr>
<tr>
<td>S. villosa Forsk.</td>
<td>Calystegia sepium L.</td>
</tr>
<tr>
<td>S. arvensis L.*</td>
<td>Convolvulus althoideus L.</td>
</tr>
<tr>
<td>Stellaria media (L.) *</td>
<td>C. arvensis L.</td>
</tr>
<tr>
<td>Vaccaria pyramidata Medik</td>
<td>C. tricolor L.</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>Cuscuta epithymum L.</td>
</tr>
<tr>
<td>Beta vulgaris L.*</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td>Chenopodium album L.*</td>
<td>Brassica napus</td>
</tr>
<tr>
<td>Ch. murale L. *</td>
<td>B. nigra (L.)</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>B. oleracea L.</td>
</tr>
<tr>
<td>Anacyclus clavatus Desf.</td>
<td>B. rapa L.</td>
</tr>
<tr>
<td>Andryala integrofolia L.</td>
<td>Capsella bursa-pastoris L.*</td>
</tr>
<tr>
<td>Artemisia vulgaris L.</td>
<td>Coronopus didymus (L.)</td>
</tr>
<tr>
<td>Aster squamatus Hier.</td>
<td>C. squamatus (Forsk.)</td>
</tr>
<tr>
<td>Calendula arvensis L.</td>
<td>Hirschfeldia incana (L.)</td>
</tr>
<tr>
<td>Centaurea diluta Ait.</td>
<td>Raphanus raphanistrum L.</td>
</tr>
<tr>
<td>Chrysanthemum coronarium L.</td>
<td>Sinapis alba L.*</td>
</tr>
<tr>
<td>Ch. fontanesii (B. et R.)</td>
<td>S. arvensis *</td>
</tr>
<tr>
<td>Ch. myconis L.</td>
<td>Sisymbrium officinale L.</td>
</tr>
<tr>
<td>Ch. segetum L.</td>
<td>Cucurbitaceae</td>
</tr>
<tr>
<td>Cichorium intybus L. *</td>
<td>Bryonia dioica Jacq.</td>
</tr>
</tbody>
</table>

242
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyperaceae</td>
<td>Carex distacha Desf. * Paspalum distichum L.</td>
</tr>
<tr>
<td></td>
<td>C. pendula Huds. Phalaris brachystachys Link. *</td>
</tr>
<tr>
<td></td>
<td>C. vulpina L. Phalaris caerulescens Desf. *</td>
</tr>
<tr>
<td></td>
<td>Cyperus longus L. Phalaris paradoxa L. *</td>
</tr>
<tr>
<td></td>
<td>C. rotundus L. Phragmites communis Trin.</td>
</tr>
<tr>
<td></td>
<td>Scirpus maritimus L. Poa annua L. *</td>
</tr>
<tr>
<td></td>
<td>Diccoreaeceae Poa trivialis L. *</td>
</tr>
<tr>
<td></td>
<td>Tamus communis L. Setaria halepense (L.) Pers.</td>
</tr>
<tr>
<td></td>
<td>Equisetaceae Sorghum halepense (L.) Pers.</td>
</tr>
<tr>
<td></td>
<td>Equisetum ramosissimum Desf. Sorghum vulgare L. *</td>
</tr>
<tr>
<td></td>
<td>Euphorbiaceae Triticum aestivum L. *</td>
</tr>
<tr>
<td></td>
<td>Euphorbia helioscopia L. * Triticum durum Desf. *</td>
</tr>
<tr>
<td></td>
<td>Euphorbia medicaginea Boiss. * Triticum sativum Lamk. *</td>
</tr>
<tr>
<td></td>
<td>Mercurialis annua L. Triticum vulgare L. *</td>
</tr>
<tr>
<td></td>
<td>Ricinus communis L. * Zea mays L. *</td>
</tr>
<tr>
<td>Fumariaceae</td>
<td>Iridaceae</td>
</tr>
<tr>
<td></td>
<td>Fumaria agraria Lag. Gladiolus segetum Ker-Gawe</td>
</tr>
<tr>
<td></td>
<td>Fumaria capreolata L. Iris foetidissima L.</td>
</tr>
<tr>
<td></td>
<td>Fumaria officinalis L. Lamiaeae</td>
</tr>
<tr>
<td></td>
<td>Fumaria parviflora Lamk. Lamium amplexicaule L.</td>
</tr>
<tr>
<td>Geraniaceae</td>
<td>Lamium purpureum L.</td>
</tr>
<tr>
<td></td>
<td>Erodium malachoides Mentha pulegium L.</td>
</tr>
<tr>
<td></td>
<td>Erodium moschatum (Burm.) l'Her. Mentha rotundifolia L.</td>
</tr>
<tr>
<td></td>
<td>Geranium dissectum B. et R. Fabaceae</td>
</tr>
<tr>
<td></td>
<td>Geranium molle L. Astragalus baeticus L.</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Cicer arietinum L.</td>
</tr>
<tr>
<td></td>
<td>Arundo donax L. * Lathyrus ochrus L.</td>
</tr>
<tr>
<td></td>
<td>Avena alba Vahl. * Lotus creticus L. *</td>
</tr>
<tr>
<td></td>
<td>Avena sativa L. * Medicago hispida L. *</td>
</tr>
<tr>
<td></td>
<td>Avena sterilis L. * Medicago sativa L. *</td>
</tr>
<tr>
<td></td>
<td>Bromus hordeaceus L. * Mellilotus indica (L.) All. *</td>
</tr>
<tr>
<td></td>
<td>Bromus madritensis L. * Mellilotus infesta Guss. *</td>
</tr>
<tr>
<td></td>
<td>Bromus rigidus Roth. * Ononis viscosa L.</td>
</tr>
<tr>
<td></td>
<td>Cynodon dactylon (L.) Pers. * Pisum sativum L. *</td>
</tr>
<tr>
<td></td>
<td>Dactylis glomerata L. Scorpiurus vermiculatus L.</td>
</tr>
<tr>
<td></td>
<td>Festuca elatior L. Trifolium campe stre L.</td>
</tr>
<tr>
<td></td>
<td>Hordeum murinum L. * Trifolium repens L.</td>
</tr>
<tr>
<td></td>
<td>Hordeum sativum L. * Trifolium squarrosum</td>
</tr>
<tr>
<td></td>
<td>Koeleria phleoides (Vill.) Pers. Trifolium tomentosa L.</td>
</tr>
<tr>
<td></td>
<td>Lagurus ovatus L. Vicia faba L.</td>
</tr>
<tr>
<td></td>
<td>Lolium multiflorum Lamk. * Vicia lutea L.</td>
</tr>
<tr>
<td></td>
<td>Oryzopsis milacea (L.) Asch. et Schiv. * Vicia sativa L.</td>
</tr>
<tr>
<td></td>
<td>Panicum sanguinale L. Vicia villosa Roth.</td>
</tr>
<tr>
<td>Family</td>
<td>Species</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Liliiaceae</td>
<td>Plantago major L. *</td>
</tr>
<tr>
<td>Allium roseum L.</td>
<td>Plantago psyllium L. *</td>
</tr>
<tr>
<td>Allium triquetrum L.</td>
<td>Primulaceae</td>
</tr>
<tr>
<td>Anthericum lilio L.</td>
<td>Anagallis arvensis phoenicea (Gouan) Vollus.</td>
</tr>
<tr>
<td>Asparagus acutifolius L.</td>
<td>Anagallis a. parviflora (Hoff. et Link) Batt.</td>
</tr>
<tr>
<td>Stachys arvensis L.</td>
<td>Cyclamen africanum Boiss. et Reut.</td>
</tr>
<tr>
<td>Stachys ocymastrum (L.) Brig.</td>
<td>Polygonaceae</td>
</tr>
<tr>
<td>Linaceae</td>
<td>Emex spinosa (L.) Campb.</td>
</tr>
<tr>
<td>Linum strictum L.</td>
<td>Polygonum aviculare L.</td>
</tr>
<tr>
<td>Lythraceae</td>
<td>Polygonum convolvulus L.</td>
</tr>
<tr>
<td>Lythrum junceum Soland.</td>
<td>Rumex conglomeratus Murr.</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Rumex crispus L.</td>
</tr>
<tr>
<td>Lavatera cretica L.</td>
<td>Rumex pulcher L.</td>
</tr>
<tr>
<td>Lavatera trimestris L.</td>
<td>Portulacaceae</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Portulaca oleracea L.</td>
</tr>
<tr>
<td>Ficus carica L. *</td>
<td>Renonculaceae</td>
</tr>
<tr>
<td>Ficus retusa *</td>
<td>Adonis annua L.</td>
</tr>
<tr>
<td>Morus nigra L. *</td>
<td>Ranunculus macrophyllus Desf.</td>
</tr>
<tr>
<td>M. alba *</td>
<td>Ranunculus muricatus L.</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Ranunculus sardous Grantz.</td>
</tr>
<tr>
<td>Fraxinus angustifolia Vahl. *</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Olea europaea L. *</td>
<td>Malus sylvestris Mill. *</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Cydonia japonica Pers.</td>
</tr>
<tr>
<td>Ammi majus L.</td>
<td>Pirus communis L. *</td>
</tr>
<tr>
<td>Ammi visnaga Lamk.</td>
<td>Prunus domestica L. *</td>
</tr>
<tr>
<td>Anthriscus silvestris Hoffm.</td>
<td>Pentilla reptans L.</td>
</tr>
<tr>
<td>Daucus carota L.</td>
<td>Rubus ulmifolius Schott. *</td>
</tr>
<tr>
<td>Ferula communis L.</td>
<td>Rubiaceae</td>
</tr>
<tr>
<td>Foeniculum vulgare L.</td>
<td>Galium aparine L.</td>
</tr>
<tr>
<td>Helosciadium nodiflorum Lag.</td>
<td>Galium tricorne Wilt.</td>
</tr>
<tr>
<td>Ridolfia segetum Moris</td>
<td>Rubia peregrina L.</td>
</tr>
<tr>
<td>Scandix pecten-veneris L.</td>
<td>Sherardia arvensis L.</td>
</tr>
<tr>
<td>Smynium olusatrum L.</td>
<td>Rutaceae</td>
</tr>
<tr>
<td>Tonnellis arvensis (Huds.) Link.</td>
<td>Citrus aurentium L.</td>
</tr>
<tr>
<td>Orobancheae</td>
<td>Citrus deliciosa Swingle</td>
</tr>
<tr>
<td>Orobancheae crenata Forsk.</td>
<td>Citrus limon Burm.</td>
</tr>
<tr>
<td>Oxalidaceae</td>
<td>Salicaceae</td>
</tr>
<tr>
<td>Oxalis cernua Thumb.</td>
<td>Populus alba L.</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>Populus nigra L.</td>
</tr>
<tr>
<td>Papaver hybridum L. *</td>
<td></td>
</tr>
<tr>
<td>Papaver rhoeas L.</td>
<td></td>
</tr>
<tr>
<td>Plantaginaceae</td>
<td></td>
</tr>
<tr>
<td>Plantago coronopus L. *</td>
<td></td>
</tr>
</tbody>
</table>
Annexe n° 2 : Faune avienne de la Mitidja

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciconiidae</td>
<td>Ciconia ciconia (Linné, 1758) Ciconia nigra (Linné, 1758)</td>
<td>Laridae Larus ridibundus Linné, 1766 Larus fuscus Linné, 1758 Larus michahelis Naumann, 1840 Larus audouinii Payraudeau, 1826</td>
</tr>
<tr>
<td>Anatidae</td>
<td>Anas platyrhynchos Linné, 1758</td>
<td>Pteroclidae Pterocles orientalis (Linné, 1758)</td>
</tr>
<tr>
<td>Falconidae</td>
<td>Falco tinunculus Linné, 1758 Falco naumanni Fleischer, 1817 Falco peregrinus Gmelin, 1788</td>
<td>Psittacidae Psittacula krameri Scopoli, 1769 Poicephalus senegalensis (Linné, 1766)</td>
</tr>
<tr>
<td>Phasianidae</td>
<td>Coturnix coturnix (Linné, 1758) Alectoris barbara (Bonnaterre, 1829)</td>
<td>Strigidae Athene noctua Scopoli, 1769 Strix aluco Linné, 1758 Asio zeus Linné, 1758 Otus scops Linné, 1758</td>
</tr>
<tr>
<td>Rallidae</td>
<td>Gallinula chloropus (Linné, 1758) Fulica atra Linné, 1758</td>
<td>Tytonidae Tyto alba Scopoli, 1759</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apodidae Apus apus (Linné, 1788) Apus pallidus (Shelley, 1870)</td>
</tr>
<tr>
<td>Order</td>
<td>Family</td>
<td>Species</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Coraciidae</td>
<td>Coracias garrulus</td>
<td>L. megarynchos Brehm, 1831</td>
</tr>
<tr>
<td>Meropidae</td>
<td>Merops apiaster</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Upupidae</td>
<td>Upupa epops</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Picidae</td>
<td>Dendrocopos minor</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Alaudidae</td>
<td>Galerida cristata</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Hirundinidae</td>
<td>Delichon urbica</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Motacillidae</td>
<td>Motacilla alba</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Trogloctidae</td>
<td>Troglydtes troglodytes</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>Pycnonotidae</td>
<td>Pycnonotus barbatus</td>
<td>Desfontaines, 1758</td>
</tr>
<tr>
<td>Passeriidae</td>
<td>Passer domesticus</td>
<td>Linné, 1758</td>
</tr>
<tr>
<td>(Linné, 1758)</td>
<td>Sturnidae Sturnus vulgaris Linné, 1758 Sturnus unicolor Temminck, 1820</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Annexe 3 : Liste des espèces avies rentrant dans le calcul de l’analyse factorielle des correspondances (analyse qualitative)
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>REGH</th>
<th>ROUI</th>
<th>MEFT</th>
<th>CHER</th>
<th>OSMA</th>
<th>BARA</th>
<th>AINN</th>
<th>CHEB</th>
<th>BIRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Bubulcus ibis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Nycticorax nycticorax</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>003</td>
<td>Ciconia ciconia</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Anas platyrhynchos</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>005</td>
<td>Phoenicopterus r.-roseus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Aythya fuligula</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Aquila chrysaetos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Hieraaetus fasciatus</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>Buteo rufinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>B. buteo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>Circus aeruginosus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>C. cyaneus</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>Accipiter nisus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>Milvus milvus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>M. nigrans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>Elanus caeruleus</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>Falco tinnunculus</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>F. naumanni</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>F. peregrinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>Coturnix coturnix</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>Alectoris barbara</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>Gallinula chloropus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>Fulica atra</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>Scolopax rusticola</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>Larus ridibundus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>L. fuscus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>L. michahelis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>028</td>
<td>Larus audouinii</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>029</td>
<td>Pterocles orientalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>Columba livia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>C. palumbus</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>C. oenas</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>Streptopelia turtur</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>St. senegalensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>St. decaocto</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>St. roseo grisea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Cuculus canorus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>Psittacula krameri</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>Apus apus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>A. pallidus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>Coracias garrulus</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>Merops apiaster</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>Upupa epops</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Species</td>
<td>Column1</td>
<td>Column2</td>
<td>Column3</td>
<td>Column4</td>
<td>Column5</td>
<td>Column6</td>
<td>Column7</td>
<td>Column8</td>
<td>Column9</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>044</td>
<td>Dendrocoptes minor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>045</td>
<td>Jynx torquilla</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>046</td>
<td>Galerida cristata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>047</td>
<td>Alauda arvensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>048</td>
<td>Galerida theklae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>049</td>
<td>Lullula arborea</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>050</td>
<td>Melanocorypha calandra</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>051</td>
<td>Calendrela rufescence</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>052</td>
<td>C. brachyactyla</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>053</td>
<td>Delichon urbica</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>054</td>
<td>Hirundo rustica</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>055</td>
<td>Riparia riparia</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>056</td>
<td>Motacilla alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>057</td>
<td>M. caspica</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>058</td>
<td>M. flava</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>059</td>
<td>Anthus trivialis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>060</td>
<td>A. pratensis</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>061</td>
<td>Anthus sp</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>062</td>
<td>Troglodytes troglodytes</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>063</td>
<td>Pycnonotus barbatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>064</td>
<td>Saxicola torquata</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>065</td>
<td>S. rubetra</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>066</td>
<td>Oenanthe oenanthe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>067</td>
<td>Phoenicurus ochruros</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>068</td>
<td>Ph. moussieri</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>069</td>
<td>Erithacus rubecula</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>070</td>
<td>Luscinia megarhynchos</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>071</td>
<td>Turdus philomelos</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>072</td>
<td>T. viscivorus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>073</td>
<td>T. merula algira</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>074</td>
<td>Monticola solitarius</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>075</td>
<td>Acrocephalus scirpaceus</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>076</td>
<td>A. shoenoabaenus</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>077</td>
<td>Cisticola juncidis</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>078</td>
<td>Hippolais pallida</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>079</td>
<td>Sylvia communis</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>080</td>
<td>S. borin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>081</td>
<td>S. atricapilla</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>082</td>
<td>S. melanocephala</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>083</td>
<td>S. conspicillata</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Annexe 4 : Liste des espèces avies rentrant dans le calcul de l’analyse factorielle des correspondances (analyse quantitative)
<table>
<thead>
<tr>
<th></th>
<th>REGH</th>
<th>ROUI</th>
<th>MEFT</th>
<th>CHER</th>
<th>OSMA</th>
<th>BARA</th>
<th>AINN</th>
<th>CHEB</th>
<th>BIRT</th>
<th>BFAR</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Coturnix coturnix</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>002</td>
<td>Alectoris barbara</td>
<td>0,33</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0,38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>003</td>
<td>Gallinula chloropus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>004</td>
<td>Scolopax rusticola</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>Pterocles orientalis</td>
<td>0</td>
</tr>
<tr>
<td>006</td>
<td>Columba livia</td>
<td>6,11</td>
<td>17,06</td>
<td>0</td>
<td>0</td>
<td>6,14</td>
<td>1,86</td>
<td>1,38</td>
<td>0,57</td>
<td>0</td>
<td>1,67</td>
</tr>
<tr>
<td>007</td>
<td>C. palumbus</td>
<td>0</td>
<td>0,69</td>
<td>1,36</td>
<td>0,71</td>
<td>1,57</td>
<td>4,08</td>
<td>2,14</td>
<td>0,17</td>
<td>0</td>
<td>0,33</td>
</tr>
<tr>
<td>008</td>
<td>C. oenas</td>
<td>1,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>009</td>
<td>Streptopelia turtur</td>
<td>0,67</td>
<td>0</td>
<td>2,45</td>
<td>0,29</td>
<td>0,67</td>
<td>12</td>
<td>0,43</td>
<td>0</td>
<td>0,86</td>
<td>1,5</td>
</tr>
<tr>
<td>010</td>
<td>St. senegalensis</td>
<td>0,44</td>
<td>0,06</td>
<td>0,5</td>
<td>0,29</td>
<td>0,29</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>St. decaocto</td>
<td>0,56</td>
<td>0,63</td>
<td>0,5</td>
<td>0,79</td>
<td>2,14</td>
<td>0</td>
<td>0,57</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
</tr>
<tr>
<td>012</td>
<td>Cuculus canorus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>013</td>
<td>Psittacula krameri</td>
<td>0,55</td>
<td>0,31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>1,43</td>
<td>2,5</td>
<td>0</td>
</tr>
<tr>
<td>014</td>
<td>Coracias garrulus</td>
<td>0</td>
<td>0</td>
<td>0,18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>015</td>
<td>Merops apiaster</td>
<td>4,17</td>
<td>0</td>
<td>3,73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>016</td>
<td>Upupa epops</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,18</td>
<td>0,14</td>
<td>0,33</td>
<td>0</td>
<td>0,43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>017</td>
<td>Dendrocopos minor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,04</td>
</tr>
<tr>
<td>018</td>
<td>Jynx torquilla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>019</td>
<td>Galerida cristata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0,54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>020</td>
<td>Alauda arvensis</td>
<td>0</td>
</tr>
<tr>
<td>021</td>
<td>Galerida theklae</td>
<td>0</td>
</tr>
<tr>
<td>022</td>
<td>Lullula arboerea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>023</td>
<td>Melanocorypha calandra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>024</td>
<td>Calandrella. Rufescens</td>
<td>0</td>
</tr>
<tr>
<td>025</td>
<td>C. brachydactyla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,43</td>
<td>0</td>
<td>0,15</td>
<td>0</td>
</tr>
<tr>
<td>026</td>
<td>Motacilla alba</td>
<td>0,67</td>
<td>1,19</td>
<td>5,67</td>
<td>2</td>
<td>1,25</td>
<td>0,23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,33</td>
</tr>
<tr>
<td>027</td>
<td>M. caspica</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>028</td>
<td>M. flavus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>029</td>
<td>Anthus trivialis</td>
<td>0</td>
</tr>
<tr>
<td>030</td>
<td>A. pratensis</td>
<td>0</td>
<td>0,38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>031</td>
<td>Anthus sp</td>
<td>0</td>
</tr>
<tr>
<td>032</td>
<td>Troglodytes troglodytes</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>033</td>
<td>Pycnonotus barbatus</td>
<td>0,67</td>
<td>0,44</td>
<td>0,07</td>
<td>0</td>
<td>0,29</td>
<td>1,29</td>
<td>0</td>
<td>0,57</td>
<td>0</td>
<td>1,13</td>
</tr>
<tr>
<td>034</td>
<td>Saxicola torquata</td>
<td>0</td>
<td>0,44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>035</td>
<td>S. rubetra</td>
<td>0</td>
<td>0,06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>036</td>
<td>Oenanthe oenanthe</td>
<td>0</td>
</tr>
<tr>
<td>037</td>
<td>Phoenicurus ochruros</td>
<td>0</td>
<td>0,44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,4</td>
<td>0</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>038</td>
<td>Ph. moussieri</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,58</td>
</tr>
<tr>
<td>039</td>
<td>Erithacus rubecula</td>
<td>0,33</td>
<td>1</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
</tr>
<tr>
<td>040</td>
<td>Luscinica.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

253
<table>
<thead>
<tr>
<th></th>
<th>megarhynchos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>041 Turdus philomelos</td>
<td>1,33</td>
<td>0,06</td>
<td>0</td>
<td>0</td>
<td>0,25</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,44</td>
</tr>
<tr>
<td>042 T. viscivorus</td>
<td>0,11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>043 T. merula algira</td>
<td>0,56</td>
<td>0,88</td>
<td>0,36</td>
<td>0,07</td>
<td>1</td>
<td>0,77</td>
<td>2,43</td>
<td>0,5</td>
<td>0,67</td>
<td>2,5</td>
</tr>
<tr>
<td>044 Monticola solitarius</td>
<td>0</td>
</tr>
<tr>
<td>045 Acrocephalus scirpaceus</td>
<td>0,33</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>046 A. shoenobaenus</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>047 Cisticola juncidis</td>
<td>0,56</td>
<td>0,5</td>
<td>0,21</td>
<td>0,29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,22</td>
<td>0,33</td>
</tr>
<tr>
<td>048 Hippolais pallida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,33</td>
<td>0</td>
<td>0,57</td>
<td>0</td>
<td>0,29</td>
<td>0</td>
</tr>
<tr>
<td>049 Sylva communis</td>
<td>0,67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,29</td>
<td>0,33</td>
</tr>
<tr>
<td>050 S. borin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,67</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>051 S. atricilla</td>
<td>0,22</td>
<td>0,38</td>
<td>0</td>
<td>0</td>
<td>0,43</td>
<td>0,08</td>
<td>1</td>
<td>0,17</td>
<td>0,11</td>
<td>0,46</td>
</tr>
<tr>
<td>052 S. melanocephala</td>
<td>0,89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,15</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>053 S. conspicillata</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>054 S. cantillans</td>
<td>0</td>
</tr>
<tr>
<td>055 Cettia cetti</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>056 Locustelle luscinoides</td>
<td>0,33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>057 Regulus ignicapilla</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>058 Phylloscopus collybita</td>
<td>0</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>0,75</td>
<td>0</td>
<td>0,75</td>
<td>0</td>
<td>0</td>
<td>1,06</td>
</tr>
<tr>
<td>059 P. trochilus</td>
<td>0</td>
</tr>
<tr>
<td>060 P. bonelli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>061 Muscicapa striata</td>
<td>0,5</td>
<td>0</td>
<td>0,09</td>
<td>0,29</td>
<td>0</td>
<td>0,09</td>
<td>0,14</td>
<td>0</td>
<td>0,14</td>
<td>1</td>
</tr>
<tr>
<td>062 Ficedula hypoleuca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>063 Parus major</td>
<td>0</td>
<td>0,06</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0,11</td>
<td>0,13</td>
</tr>
<tr>
<td>064 P. caeruleus</td>
<td>0,33</td>
<td>0,31</td>
<td>0</td>
<td>0,07</td>
<td>0,57</td>
<td>0,38</td>
<td>1</td>
<td>0,17</td>
<td>0,56</td>
<td>0,75</td>
</tr>
<tr>
<td>065 Certhia brachyactyla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>066 Oriolus oriolus</td>
<td>0</td>
<td>0</td>
<td>0,18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>067 Tchagra senegalou</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>068 Lanius meridionalis</td>
<td>0,11</td>
<td>0,13</td>
<td>0</td>
<td>0,5</td>
<td>0,14</td>
<td>0,85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>069 L. senator</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
</tr>
<tr>
<td>070 C. monedula</td>
<td>0</td>
</tr>
<tr>
<td>071 Milia cri leandra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
</tr>
<tr>
<td>072 Emberiza cerula</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>073 Passer hispaniolensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,04</td>
</tr>
<tr>
<td>074 P. domesticus x</td>
<td>4,56</td>
<td>6,81</td>
<td>0,86</td>
<td>1,5</td>
<td>1,43</td>
<td>1,38</td>
<td>3,43</td>
<td>0,17</td>
<td>1,89</td>
<td>4,25</td>
</tr>
<tr>
<td>P. hispanio</td>
<td>0,11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>075 P. montanus</td>
<td>0,11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>076 Fringilla coelebs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
<td>0,14</td>
<td>0,08</td>
<td>0,29</td>
<td>0</td>
<td>0,22</td>
<td>0,92</td>
</tr>
<tr>
<td>077 Serinus serinus</td>
<td>2,22</td>
<td>4</td>
<td>0,29</td>
<td>0,86</td>
<td>0,14</td>
<td>0,08</td>
<td>0,57</td>
<td>1</td>
<td>2,67</td>
<td>5,79</td>
</tr>
<tr>
<td>078 Carduelis cannabina</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0</td>
<td>0,23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,54</td>
</tr>
<tr>
<td>079 C. carduelis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,15</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0,21</td>
</tr>
<tr>
<td>080 C. chloris</td>
<td>1,33</td>
<td>0,44</td>
<td>2,21</td>
<td>0,5</td>
<td>1,29</td>
<td>0,92</td>
<td>1,29</td>
<td>0</td>
<td>0,44</td>
<td>1,04</td>
</tr>
<tr>
<td>#</td>
<td>Species</td>
<td>Value</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>081</td>
<td>Sturnus unicolor</td>
<td>0.89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>