

الجمهوريــــة الجزائريـة الديمقراطيـة الشعبيــة

RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

وزارة التعليم العالى والبحث العلمي

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE **SCIENTIFIQUE**

Ecole Nationale Supérieure Agronomique

المدرسة الوطنية العليا للفلاحة

Département : Science du sol

القسم: علم التربة

Spécialité : Sol, protection et mise en valeur des terres

التخصص: التربة، حماية وتحسين الاراضي

Mémoire De Fin D'études

Pour l'obtention du diplôme de master

THEME

STATUT HYDROCHIMIQUE DES EAUX SOUTERRAINES UTILISEES EN IRRIGATION ET RISQUES DE DEGRADATION DES SOLS : CAS DE LA WILAYA DE KHENCHELA

Présenté par : Mlle Aya ARROUDJ Soutenu le 07/12/2020

Devant le jury composé de :

Présidente: Mlle Boureghda N. MCA, ENSA

Promoteur: M. Semar A. Professeur, ENSA

Examinateurs: M. Laribi A.E.K. MCA, ENSA

> M. Ould Ferroukh M.E.H MAA, ENSA

> > Promotion: 2017 / 2020

Table des matières

Dédicaces	I
Remerciements	II
Table des matières	III
Liste des figures	VII
Liste des tableaux	VIII
Liste des annexes	IX
Liste des abréviations	X
Introduction Générale	1
Chapitre Premier : Synthèse bibliographique	4
Introduction	4
I.1. Paramètres d'évaluation de la qualité de l'eau	4
I.1.1. Paramètres physiques	5
I.1.2. Paramètres chimiques	5
I.1.3. Validation des résultats d'analyses physico-chimiques	6
I.1.4. Faciès chimiques	7
I.1.5. Indice de saturation des minéraux	9
I.1.6. Indices d'échange des bases	9
I.1.7. Dureté des eaux ou titre hydrométrique	10
I.1.8. Diagramme de Gibbs	10
I.2. Phénomène de dégradation du sol	11
I.2.1. Effet des eaux d'irrigation sur le sol	11
I.2.2. Qualification de certains paramètres liés à l'eau d'irrigation	19
I.3. Moyens de mesure de la dégradation des sols	21
Conclusion	22
Deuxième Chapitre : Présentation du milieu naturel	24

Introduction	24
I.1. Situation géographique et administrative	24
II.2. Le relief	26
II.3. Cadre climatique	26
II.3.1. Température	27
II.3.2. Précipitation	27
II.3.3. Détermination de la saison sèche selon le diagramme ombrothermique	28
II.3.4. Classification de la zone selon le quotient pluviométrique d'Emberger	29
II.4. Géologie, hydrologie et hydrogéologie	30
II.4.1. Géologie	30
II.4.2. Hydrologie	33
II.4.3. Hydrogéologie	35
II.5. Description des sols	36
II.6. Agriculture et mode d'irrigation	37
II.6.1. Exploitation agricole	37
II.6.2. Irrigation	38
Conclusion	39
Troisième Chapitre : Matériel et méthodes	41
Introduction	41
III.1. Échantillonnage	41
III.1.1. Choix des points d'eau	41
III.1.2. Prélèvement	41
III.1.3. Mesure in situ	43
III.2. Méthodes d'analyses chimiques	43
III.2.1. Détermination du calcium et du magnésium	44
III.2.2. Détermination du sodium et du potassium	44

III.2.3. Détermination des sulfates	45
III.2.4. Détermination des nitrates	45
III.2.5. Détermination des chlorures	45
III.2.6. Détermination des bicarbonates	45
III.2.7. Validation des résultats	46
III.3. Traitement des données	46
III.3.1. Logiciel d'hydrochimie d'Avignon (Diagramme)	46
III.3.2. Microsoft office Excel	47
III.3.3. Logiciel ArcGIS 10.7	47
Conclusion	48
Quatrième Chapitre : Résultats et discussion	50
Introduction	50
IV.1. Évaluation hydro-chimique des eaux souterraines	50
IV.1.1. Paramètres physico-chimiques	50
IV.1.2. Détermination des facies chimiques	52
IV.1.3. Indice de saturation	55
IV.1.4. Indice d'échange des bases	56
IV.1.5. La dureté totale	57
IV.1.6. Diagramme de Gibbs	57
IV.2. Évaluation de la qualité des eaux à des fins d'irrigation	58
IV.2.1. Evaluation des paramètres physico-chimiques	58
IV.2.2. Classification selon le diagramme de Riverside	59
IV.2.3. Classification selon le diagramme de Wilcox	60
IV.2.4. Classification selon le RSC	61
IV.2.5. Classification selon l'indice de perméabilité	61
IV.2.6. Classification selon l'indice de Kelly	62

IV.2.7. Classification selon le Magnésium ratio	62
Conclusion	62
Conclusion générale	65
Références	68
Annexes	76
Résumé	84

Résumé

La détermination de l'adéquation et de la vulnérabilité de la qualité des eaux souterraines à des fins d'irrigation est une alarme clé et des premiers secours pour une gestion prudente des ressources en eaux souterraines afin de réduire ses impacts sur le sol après l'irrigation. Cette étude a été menée pour déterminer la pertinence globale de la qualité des eaux souterraines pour l'irrigation dans les plaines de Khenchela, le Nord-Est de l'Algérie. 21 échantillons d'eau souterraine ont été prélevés pour analyser les variables de la qualité de l'eau. Des analyses chimiques faites en laboratoire, outils d'analyse chimique, types de modèles et des diagrammes ont été utilisés pour évaluer la qualité de l'eau à des fins d'irrigation. Les résultats obtenus montrent que la minéralisation élevée des eaux souterraines est essentiellement liée à la nature géologique des terrains encaissants. Ces eaux sont dominées par les : sulfate, bicarbonate et calcium. Suivant les diagrammes de Riverside et de Wilcox, les eaux souterraines présentent une qualité moyenne, médiocre, à mauvaise déconseillée pour l'irrigation. L'indice de perméabilité ainsi que celui de Kelly montre l'absence de risque sur la dégradation des sols de la région.

Mots clés: hydrochimie, eau souterraine, irrigation, sol, dégradation, Khenchela.

Abstratct

Determining the suitability and vulnerability of groundwater quality for irrigation purposes is a key alarm and first aid for careful management of groundwater resources to reduce its impacts on the soil after irrigation. This study was carried out to determine the overall relevance of the quality of groundwater for irrigation in the plains of Khenchela, northeastern Algeria. 21 groundwater samples were taken to analyze the water quality variables. Laboratory chemical analyzes, chemical analysis tools, types of models and diagrams were used to assess the quality of water for irrigation purposes. The results obtained show that the high mineralization of groundwater is essentially linked to the geological nature of the surrounding land. These waters are dominated by: sulfate, bicarbonate and calcium. According to the Riverside and Wilcox diagrams, the groundwater is of moderately good, poor, to poor quality not recommended for irrigation. The permeability index as well as that of Kelly shows the absence of risk on soil degradation in the region.

Keywords: hydrochemistry, groundwater, irrigation, soil, degradation, Khenchela.

الملخص

يعد تحديد مدى كفاية وضعف جودة المياه الجوفية للري بمثابة إنذار رئيسي وإسعافات أولية للإدارة الدقيقة لموارد المياه الجوفية لتقليل آثار ها على التربة بعد الري. أجريت هذه الدراسة لتحديد الملاءمة العامة لنوعية المياه الجوفية للري في سهول خنشلة، شمال شرق الجزائر. تم أخذ 21 عينة مياه جوفية لتحليل متغيرات جودة المياه. تم استخدام التحاليل الكيميائية المخبرية وأدوات التحليل الكيميائي وأنواع النماذج والرسوم البيانية لتقييم جودة المياه لأغراض الري. تظهر النتائج التي تم الحصول عليها أن نسبة المعادن العالية للمياه الجوفية مرتبطة بشكل أساسي بالطبيعة الجيولوجية للأرض المحيطة. ويغلب على هذه المياه: الكبريتات والبيكربونات والكالسيوم. وفقًا لمخططات ريفرسايد وويلكوكس، فإن المياه الجوفية جيدة نسبيًا، رديئة، إلى نوعية رديئة لا ينصح بها للري. يُظهر مؤشر النفاذية وكذلك مؤشر كيلي عدم وجود مخاطر على تدهور التربة في المنطقة.

الكلمات المفتاحية: الكيمياء المائية، المياه الجوفية، الرى، التربة، التدهور، خنشلة