

الجمهوريــــة الجزائريـة الديمقراطيــة الشعبيــة PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA وزارة التعليم العالــي و البحـث العلمـي MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Higher National Agronomic School

المدرسة الوطنية العليا للفلاحة

Department: Plant Production

القسم: الإنتاج النباتي

Specialty: Genetic Resources and

التخصص: الموارد الوراثية و تحسين الانتاج النباتي

Plant breading

Final Year Project

To obtain the Master's degree

THEME

The assessment of water and nitrogen use efficiency in oliveforage pea crop intercropping system in the Setif region

Presented by: Ms. ZANOUDA Nafissa Publicly defended on 19-12-2023

In front of the jury consisted of:

President: Mrs.BOURAS-CHEKIRED FZ. Lecturer A. ENSA

Thesis supervisor: M^r. HADDAD B. Lecturer A. ENSA

Co-supervisor: M^r. LATATI M. Professor. University Skikda

Examiner: M^r. RAHMOUNE B. Lecturer A. ENSA

TABLE OF CONTENT

Acknowledgement	5
Dedication	7
Abstract	9
TABLE OF CONTENT	11
LIST OF FIGURES	15
LIST OF TABLES	18
ABREVIATION	19
INTRODUCTION	20
I. BIBLIOGRAPHIC SYNTHESIS	3
I. Agroforestry system	4
1.1. Historical progression and development	4
1.2. Definition	4
1.3. Types of systems	5
1.4. Benefits of agroforestry	6
4.1. Biodiversity	7
4.2. Carbon sequestration:	7
4.3. Enhancing soil fertility	8
4.4. Soil conservation	9
1.5. Resilience to climate change	9
II. Crop Association	9
2.1. Definition and historical perspective	9
2.2. Association types	10
2.3. Cereals and legume association	10
2.4. Tree and crop association	11
III. Productivity of tree-plant intercropping systems	11
3.1 Tree-crop Interaction	11
3.2. Water use efficiency	12
3.3. Nitrogen use efficience :	13
3.4. Advantages and disadvantages of tree and crop combinations	14
IV. Crop selection for association	14
1. Olive (Olea europaea L.)	14
1.1. Generalities:	14
1.2 Classification	15

1.3. Morphological description
1.4. Development cycle
2. Barley (Hordeum vulgare L.) 19
2.1. Generalities
2.2. Classification
2.3. Morphological description
2.4. Development cycle
2.5. Requirement
3. Forage pea (Pisum sativum.)
3.1. Generalities
3.2. Classification
3.3. Morphological description
3.4. Development cycle
3.5. Requirement
II. MATERIAL AND METHODS27
I. Work context
II. Trail objective
III. Experimental site description
IV. Pedoclimatic characteristics
1. Temperature
2. Precipitation30
3. Ombrothermic diagram
4. Soil
V. Vegetative material
VI. Trail setup methodology
1. Soil preparation
2. Sowing
3. Experimental design 34
VII. Data acquisition and parameter assessment
1. Soil sampling38
1.1. Soil moisture
1.2. Assimilable nitrogen
2. Sampling and evaluation of plant material parameters
2.1. Leaf area
2.2. Plant height
2.3. Root depth and width41

2	2.4.	Chlorophyll	42
2	2.5.	Water content in olive leaves and plants:	42
2	2.6.	Olive tree vegetative growth parameters:	42
VIII.	Tot	tal nitrogen	46
IX.	Sta	itistical analysis	47
III.	RE	SULTS AND DISCUSSION	48
		ets of cropping system (Olive-Barley; Olive-Forage pea; Olive-Monoculture) on the parameters:	
1.	On	nitrate (NO3-) and assimilable nitrogen variation in the soil	49
2.	On	soil water content variation	51
		ets of cropping system (Olive-Barley; Olive-Forage pea; Olive-Monoculture) on var ological parameters in olive:	
1.	Lea	af area	53
2.	Sho	oot length	54
3.	Lea	af number	56
4.	Car	nopy	57
III. varia		fects of cropping system (Olive-Barley; Olive-Forage pea; Olive-Monoculture) on of physiological perimeters in olive:	59
1.	Wa	ater content	59
2.	Chl	lorophyll content	61
3.	Nit	trogen content:	62
IV.	Pri	nciple components analysis PCA	64
1.	Res	sults and interpretation of morphological parameter analysis	64
	1.1.	Results	64
	1.2. Iı	nterpreting results	66
2.	Res	sults and interpretation of physiological parameter analysis	67
2	2.1. R	Results	67
2	2.2 In	nterpreting results	69
V. (Corre	elation between parameters	70
1.	Co	rrelation between morphological parameters	71
2.	Co	rrelation between physiological parameters:	73
VI. parar		fect of cropping systems (monoculture, agroforestry) in barley and forage pea on so	
1.	On	nitrate (NO3-) and assimilable nitrogen:	75
2.	On	soil water content variation	77
VII. depth		fect of cropping systems (monoculture, agroforestry) in barley and forage pea on wi	
_		<u>.</u>	

	Effect of cropping systems (monoculture, agroforestry) in barley and forage pea on leaf ar emperature and water content:	
	Effect of cropping systems (monoculture, agroforestry) in barley and forage pea on dry ass and nitrogen content:	.82
X. I	Herbaceous and olive yields	.85
IV.	CONCLUSION	.87
V. I	LIST OF REFERENCE	.90
VI.	ANNEX	105

Abstract

Agroforestry systems play a pivotal role in buffering the adverse effects of climate conditions, showcasing their potential to stabilize and enhance crop production even in the face of climate change. The study focused on elucidating the impacts of an agroforestry system featuring Laccino variety olive trees intercropped with herbaceous plants (Barley and forage pea). Conducted in the semi-arid region of El-Eulma, Setif, within the Makhloufi Aissa pilot farm in eastern Algeria, the research aimed to assess the system's efficiency in water and nitrogen availability.

Results revealed significant advantages of the agroforestry approach, particularly in enhancing the bioavailability of water and assimilable nitrogen in the soil. Notably, the system demonstrated a resistance of some plants to drought effects, and effectiveness in elevating soil nitrate levels, expanding leaf area, and increasing water and nitrogen content in crops compared to monoculture. Furthermore, crops exhibited a notable resilience to drought within the agroforestry system.

These findings underscore the critical role of agroforestry systems in reducing negative environmental impacts, alleviating drought stress on crops, fostering microclimatic conditions, diminishing reliance on external inputs, and enhancing resource use efficiency, notably in water and nitrogen.

Key words: Agroforestry, Intercropping, Olive, Barley, Pea, Water, Nitrogen.

Resumé

Les systèmes agroforestiers jouent un rôle essentiel dans l'atténuation des effets néfastes des conditions climatiques, démontrant leur potentiel de stabilisation et d'amélioration de production des cultures, même face au changement climatique. L'étude s'est concentrée sur l'élucidation des impacts d'un système agroforestier comprenant des oliviers de la variété Laccino en culture intercalaire avec des plantes herbacées (orge et pois fourrager). Menée dans la région semi-aride d'El-Eulma, à Sétif, au sein de la ferme pilote de Makhloufi Aissa, dans l'est de l'Algérie, la recherche visait à évaluer l'efficacité du système en ce qui concerne la disponibilité d'eau et d'azote.

Les résultats ont révélé des avantages significatifs de l'approche agroforestière, en particulier en ce qui concerne l'amélioration de la biodisponibilité de l'eau et de l'azote assimilable dans le sol. Le système a démontré une résistance de certaines plantes aux effets de la sécheresse et une efficacité dans l'augmentation des niveaux de nitrates dans le sol, l'expansion de la surface foliaire et l'augmentation de la teneur en eau et en azote dans les cultures par rapport à la monoculture. En outre, les cultures ont fait preuve d'une résistance notable à la sécheresse dans le système agroforestier

Ces résultats soulignent le rôle essentiel des systèmes agroforestiers dans la réduction des effets négatifs sur l'environnement, l'atténuation du stress de la sécheresse sur les cultures, l'amélioration des conditions microclimatiques, la diminution de la dépendance à l'égard des intrants externes et l'amélioration de l'efficacité de l'utilisation des ressources, notamment en ce qui concerne l'eau et l'azote.

Les mots clés : Agroforesterie, cultures intercalaires, olivier, orge, pois, eau, azote.

ملخص

وتؤدي نظم الحراجة الزراعية دورا رئيسيا في التخفيف من الأثار الضارة للظروف المناخية، مما يدل على قدرتها على تثبيت وتحسين إنتاج المحاصيل، حتى في مواجهة تغير المناخ. ركزت الدراسة على توضيح تأثيرات نظام الحراجة الزراعية بما في ذلك أشجار الزيتون من نوع الأشينو في الزراعة البينية بالنباتات العشبية (الشعير وبازلاء الأعلاف). تم إجراء البحث في منطقة شبه القاحلة في العلمة، في سطيف، في مزرعة مخلوفي عيسى التجريبية في شرق الجزائر، بهدف تقييم فعالية النظام فيما يتعلق بتوفر المياه والنيتروجين.

كشفت النتائج عن فوائد كبيرة لنهج الحراجة الزراعية، لا سيما فيما يتعلق بتحسين التوافر البيولوجي للماء ونيتروجين التربة. وقد أظهر النظام مقاومة بعض النباتات لآثار الجفاف والكفاءة في زيادة مستويات النترات في التربة، وتوسع مساحة الأوراق وزيادة محتوى المياه والنيتروجين في المحاصيل مقارنة بالزراعة الأحادية. بالإضافة إلى ذلك، أظهرت المحاصيل مقاومة كبيرة للجفاف في نظام الحراجة الزراعية وتسلط هذه النتائج الضوء على الدور الأساسي لنظم الحراجة الزراعية في الحد من الآثار السلبية على البيئة، وتخفيف الضغط على المحاصيل بسبب الجفاف، وتحسين ظروف المناخ الجزئي، والحد من الاعتماد على المدخلات الخارجية، وتحسين كفاءة الموارد، ولا سيما فيما يتعلق بالمياه والنيتروجين.

الكلمات المفتاحية: الحراجة الزراعية، الزراعة البينية، الزيتون، الشعير، البازلاء، الماء، النيتروجين.